KamLANDの現状と将来

原子炉ニュートリノ 地球ニュートリノ 太陽ニュートリノ ニュートリノレス二重ベータ崩壊

2009年9月5日 第3回高エネルギー物理学将来検討小委員会「ニュートリノセッション」

JINST 4 (2009) P04017

<u>²¹⁰Po¹³C線源によるバックグラウンドの直接評価</u>

カムランドでの²¹⁰Po¹³C線源による較正 PRL94,081801(2005) でのBG (>2.6MeV) positron annihilation from 1 st excited state $100\% \rightarrow 23\%$ Events/0.01MeV 10³ 2.69 ± 0.02 偶発同時事象 neutron capture carbon excitation $32\% \rightarrow 12\%$ 宇宙線起源 4.8 ± 0.9 2nd excited state $|100\% \rightarrow 6\%$ < 0.91**0**2 高速中性子 proton reco 10.3 ± 7.1 $^{13}C(\alpha, n)^{16}O$ 34%→11 10 Total 17.8 ± 7.3 Blue : on time , all trigger 誤差の主因は生成断面積の不定性 Red : on-off time , all trigger

10⁻¹

2009以降このバックグラウンドは消滅。

4 5 6 7 8 9 10 Prompt energy , positron scale(MeV) <u>宇宙線起源バックグラウンドの精密評価</u>

2

PR C に投稿中 (arXiv 0907.0066)

10

原子核	寿命	崩壊様式	生成率 $(\times 10^{-7} (\mu \cdot (g/cm^2))^{-1})$	シャワーミューオン当 たりの生成割合
n	$207.5\mu { m s}$	2.225 MeV (capt. γ)	2787 ± 311	$64\pm5\%$
$^{12}\mathrm{B}$	29.1 ms	$13.4 \mathrm{MeV}(\beta^-)$	42.9 ± 3.3	$68 \pm 2\%$
^{12}N	15.9 ms	$17.3 \mathrm{MeV}(\beta^+)$	1.8 ± 0.4	$77\pm14\%$
⁸ Li	1.21 s	16.0 MeV ($\beta^- \alpha$)	12.2 ± 2.6	$65\pm17\%$
⁸ B	1.11 s	18.0 MeV ($\beta^+ \alpha$)	8.4 ± 2.4	$78\pm23\%$
⁹ C	182.5 ms	16.5 MeV (β^+)	3.0 ± 1.2	$91\pm32\%$
⁸ He	171.7 ms	10.7 MeV ($\beta^-\gamma n$)	0.7 ± 0.4	$76 \pm 45\%$
⁹ Li	257.2 ms	13.6 MeV ($\beta^-\gamma n$)	2.2 ± 0.2	$77\pm6\%$
¹¹ C	29.4 min	$1.98 \mathrm{MeV}(\beta^+)$	866 ± 153	$62\pm10\%$
¹⁰ C	27.8 s	3.65 MeV ($\beta^+\gamma$)	16.5 ± 1.9	$76\pm6\%$
¹¹ Be	19.9 s	11.5 MeV (β^{-})	1.1 ± 0.2	$74 \pm 12\%$

Green : on - off time , prescale trigger

達成状況1 原子炉反ニュートリノ観測

ニュートリノ振動の証拠

ニュートリノ振動の直接証拠

Phys. Rev. Lett. 94 (2005) 081801 (724)

ニュートリノ振動パラ メータの精密測定を達成

 $\tan^2\theta = 0.56^{+0.14}_{-0.09}$ $\Delta m^2 = 7.58^{+0.21}_{-0.20} \times 10^{-5} \,\mathrm{eV}^2$

振動の2サイクルを観測

ニュートリノ振動の精密測定

Phys. Rev. Lett. 100 (2008) 221803 (117)

さらなる高精度化

TABLE I. Estimated systematic uncertainties relevant for the neutrino oscillation parameters Δm_{21}^2 and θ_{12} .

	Detector-related (%)		Reactor-related (%)		原子炉θι₃϶	実験に期待	
Δm^2_{21}	Energy scale	1.9	$\bar{\nu}_e$ -spectra [7]	0.6	新炉の横で	の測定も可能か?	
Event rate	Fiducial volume	1.8	$\bar{\nu}_e$ -spectra	2.4	→ %?		
	Energy inreshold Efficiency	1.5 0.6	Fuel composition	2.1	→ 0.8%?	4.1%→<3%!	
	Cross section	0.2	Long-lived nuclei	0.3			

炉出力の誤差を統計的に扱えるか検討中 J.Phys.G36:045002,2009

最大誤差要因の熱水流量測定(ベンチュリ式→超音波式)

 TABLE II.
 Estimated backgrounds after selection efficiencies.

スケールで誤差が蓄積 東電は全炉に装備

Background	Contribution
Accidentals	80.5 ± 0.1
⁹ Li/ ⁸ He	13.6 ± 1.0
Fast neutron & Atmospheric ν	<9.0
$^{13}C(\alpha, n)^{16}O_{gs}, np \rightarrow np$	157.2 ± 17.3
${}^{13}C(\alpha, n){}^{16}O_{gs}^{\circ}, {}^{12}C(n, n'){}^{12}C^* $ (4.4 MeV γ)	6.1 ± 0.7
${}^{13}C(\alpha, n){}^{16}O$ 1st exc. state (6.05 MeV e^+e^-)	15.2 3.5
¹³ C(α , n) ¹⁶ O 2nd exc. state (6.13 MeV γ)	3.5 ± 0.2
Total	276.1 ± 23.5

純化によりほぼ無視できる。

2. 地球起源反電子ニュートリノの高精度精密測定

Good data for geo-neutrino observation

After preformed distillation, KamLAND is acquiring low background data for geoneutrino observation. Lower operation of nuclear reactors also help geo-neutrino observation. Significance will reach more than 4-5 sigma with a little more exposure and the precision will become equivalent with the current earth model. Practical verification of the earth model will start soon.

Geo-neutrinos are being highlighted.

These BGs are eliminated.

3. 太陽起源電子ニュートリノの高精度精密測定

- ・⁷Beニュートリノの初検出
- ・ 星の進化の過程の実験的検証

・ 原子炉反電子ニュートリノ振動 との比較:CPT対称性の検証

<u>液体シンチレータ内の放射性物質の徹底的除去</u>

新開発デッドタイムフリー電子回路 宇宙線起源バックグラウンドを1/20に低減する。

ベースライン安定化回路

波形デジタイザ

トリガー回路

Muon events with BLR 0-100usec

二重β崩壊核の比較

原子核	$T_{1/2}^{0\nu}(50{\rm meV})$	$T_{1/2}^{2\nu}$ 実験値 (year)	自然存在比 (%)	Q値 (keV)			
⁴⁸ Ca→ ⁴⁸ Ti		$(4.2^{+2.1}_{-1.0}) \times 10^{19}$	0.19	4271	最大のQ、2v早い		
$^{76}\text{Ge}{\rightarrow}^{76}\text{Se}$	0.86×10^{27}	$(1.5\pm0.1) \times 10^{21}$	7.8	2039	半導体		
⁸² Se→ ⁸² Kr	2.44×10^{26}	$(0.92\pm0.07) \times 10^{20}$	9.2	2995			
⁹⁶ Zr→ ⁹⁶ Mo	0.98×10^{27}	$(2.0\pm0.3) \times 10^{19}$	2.8	3351			
$^{100}Mo \rightarrow ^{100}Ru$	2.37×10^{26}	$(7.1\pm0.4) \times 10^{18}$	9.6	3034	2v早い		
$^{116}Cd \rightarrow ^{116}Sn$	2.86×10^{26}	$(3.0\pm0.2) \times 10^{19}$	7.5	2805			
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	4.53×10 ²⁷	$(2.5\pm0.3) \times 10^{24}$	31.7	867			
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.16×10^{26}	$(0.9\pm0.1) imes10^{21}$	34.5	2529	存在比大		
¹³⁶ Xe→ ¹³⁶ Ba	4.55×10^{26}	>10 ²²	8.9	2476	2v遅い、希ガス		
$^{150}Nd \rightarrow ^{150}Sm$	2.23×10^{25}	$(7.8\pm0.6) \times 10^{18}$	5.6	3367	0v、2v早い		
$0v\beta\beta (5%FWHM)$ (10-6に規格化) 2.0- 1.5- 1.0- 0.5- $2v\beta\beta$ (1に規格化) $0v\beta\beta (5%FWHM)$ (10-2に規格化) $0v\beta\beta (5%FWHM)$ (10-2に規格化) $0v\beta\beta (5%FWHM)$ (10-2に規格化) $0v\beta\beta (5%FWHM)$ (10-2に規格化) $T^{0\nu}/T^{2\nu}$ が小さいと高分解能							
0.0 1.2 0.4 0.6 0.8 1.0 / でなくても良い。							

KamLAND with ¹³⁶Xe 1st phase A Δ Δ 0 mini balloon ¹³⁶Xe loaded 250-400 kg Liquid scintillator 136Xe loaded Liquid scintillator buffer oil pure water Ŷ Ŷ Ŷ S. 2nd phase Winstone cone mirror 2.3m radius balloon +80% (target) 1000 kg ¹³⁶Xe loaded new LS +40% light yield (target)

Merit of using KamLAND

• ultra low radioactivity environment based on ultra pure LS and 9m radius active shield

U: <3.5x10⁻¹⁸ g/g Th: <5.2x10⁻¹⁷ g/g

- no modification to the detector is necessary to accommodate DBD nuclei
- high sensitivity with low cost (~6M\$, budget secured)

~60 meV with 1.5 year

- reactor and geo- antineutrino observations continue
- high scalability (2nd phase) 1000 kg ¹³⁶Xe, improvement of energy resolution with light concentrators and brighter LS (~30M\$)

~25 meV with 5 years

Merit of using Xe

- isotopic enrichment, purification established
- soluble to LS more than 3 wt%, easily extracted
- slow $2\nu 2\beta$ (T_{1/2}>10²² years) requires modest energy resolution

他の競合する研究計画との感度比較

ニュートリノレス二重β崩壊は1939年(W.H.Furry)以来の研究課題で、当初は暗中模索だったが、 現在は、ニュートリノ振動研究によるニュートリノ質量の発見で具体的な目標が設定できるようになった。

Major R&D items

done

• Xenon loaded LS with the same density, luminosity, transparency

• 2.7~3.4 m ϕ Mini-balloon (target: thin, 25µm, and low radioactivity, 10⁻¹³ g/g U/Th)

• Xenon purification, storage, extraction etc

experiences of big distillation system, high pressure nitrogen production

• Cosmogenic background rejection with dead-time free electronics

factor 20 reduction with neutron tagging

Baseline restorer and signal splitter

1GHz FADC + 3 range 200 MHz FADC for each channel

Trigger module

project time line

カムランドで可能性のある(国際)共同研究例

◎異なる原子核での二重β崩壊詳細研究

ITEP (Moscow) A.Barabash ら

¹¹⁶CdWO₄

Osaka T.Kishimoto ら ⁴⁸CaF₂ (CANDLES-IV)

◎革新技術での二重β崩壊の高感度化

KEK N.Ishihara ら

ドリフトチェンバーでの磁場中の飛跡 測定に1トンの¹³⁶Xeを組み合わせる?

液体シンチレータ中の飛跡撮像技術 と1トンの¹³⁶Xeを組み合わせる。

◎暗黒物質の探索など DAMA/NaI+LIBRA 2-6 keV DAMA/NaI (0.29 ton×yr) ←DAMA/LIBRA (0.53 ton×yr)→ Residuals (cpd/kg/keV) 0.08 (target mass = 87.3 kg) (target mass = 232.8 kg) 0.06 photo-sensors Nalで検証すべきでは? 0.04 ong thin pipe 0.02 Nal ~1ton 0 -0.02 -0.04 -0.06 -0.08 -0.1 500 1000 1500 2000 2500 3000 4000 4500 Time (day) **Evidence of Galactic Halo Dark Matter?**

まとめ

- ●原子炉ニュートリノ振動の精密測定を達成 もう一段の改善を目指す。
- ●地球ニュートリノの観測を達成 S/Nは向上しており、地球モデルの実質的な検証を目指す。
- ●高度再純化を実行、なんとか我慢できるレベルか?
 ⁷Be, ⁸Bの低しきい値データを蓄積中。
- ●ニュートリノレス二重β崩壊探索の準備中
 - 第一段階 ~60meV (縮退構造)
 - 第二段階 ~25meV (逆階層構造)

●極低放射能環境での物理研究の可能性を検討中