LHCでの物理

- 0. LHC/ATLASの状況と予定
- 1. Higgs
- 2. SUSY
- 3. TeV scaleでの余剰次元
- 4. Top & (B-Physics?)
- 5. 検出器のperformance
- 6. 纏め

2009年 6月 桜会

2008年9月10日 LHC 実験開始 (Beamを回すことに成功)

(歴代の所長も参加して実験開始)

(成功の瞬間のコントロールルーム)

ATLAS検出器はちゃんと稼働して beamに付随した事象 (コリメーターにあててシャワー)

ATLAS以外もちゃんと稼働(そりゃ2007年のつもりで準備したんですから)

でも、3度目の危機(財政、4重極)

LHC Incident (19 Sept. 2008)

 1.Sector34のパワーテスト中、dipoleとQ-magnetの 超伝導ケーブルバス結線部の抵抗値が増加

 → 温度上昇 → クエンチ → クエンチ保護回路作動

 2.電源トリップが作動したものの、アーク放電が発生

 → 真空(断熱)容器に穴

 3.真空容器内およびビームパイプ内にヘリウムが流出

 → shock wave

 4.減圧排気バルブが開放されたが、

- → 真空隔壁が破壊、いくつかのマグネットが動かされ
- → 6トンのヘリウムがトンネル内に流出(15t/sector)

・53台のマグネット
(39 diploles +14 quadrupoles)
を地上に持ち出して修理・チェック
・クエンチ検出、異常な電圧や熱の
検出システムの改善
・安全開放バルブの容量と数を増強
・ビームパイプの掃除
・真空隔壁を備えたQ-magnetの
サポートを強化

予定(I) 短いスケール

2009年4月 修理したマグネット を地下に設置完了 (16修理 37スペアー使用)

> 10月 実験再開予定 (いい加減な予測ですが 900GeV:加速無しで 衝突させて、QCDjet,MBで detector研究:年末~年明け)

- 2010年 冬のshutdown なしに ECM=10TeV程度 L=200pb⁻¹ (SUSYなども700-800GeVならこれで発見可能)
- 2011年 ECM=14TeV L=1fb⁻¹程度を目指す (1-1.5TeV SUSYなどの発見、Higgsなどの兆候)
- 2012年 L=O(10)fb⁻¹ (10³³ cm⁻²s⁻¹) (Higgsの確実な発見、SUSY 2TeV程度まで)

2014年 Phase 1 アップグレード: (四重極、Linacのアップグレード 承認済み) L=O(100)fb⁻¹/ year

2017,8年 Phase 2 アップグレード: (検出器・加速器大幅な改良)

まだ何も決まっていない。 (Optionなどの詳しい話は 花垣さん)

目的:

(1) Higgsの精密測定 Self-couplingの測定など

(2) SUSYなど発見された
 new physics の測定
 又は SUSY 3.5TeV程度まで排除
 SUSYのクリティカルなテスト

大きなDetectors: バランス 優先のパフォーマンス (δP/P~1/(BL²) Lで勝負)
Accordion Shape of L.Ar detectors カロリメータ(放射線耐性、奥行き情報)
Large air-core toroidal magnet ミューオンシステム (トロイド磁石)

$PbW0_4$

0.9% e, Y Muon 2-3% 12% Jets

ハドロンの外側:(薄いハドロンカロリメータ)

 PbWO₄シンチ 電子・γに賭けた (Higgs) (高いエネルギー分解能)

ATLAS実験への日本の貢献(1)

15研究機関から110名ほどが参加

ソレノイド超伝導磁石、半導体飛跡検出器 ミューオントリガー検出器、トリガーシステム 大きな寄与(10%)

ATLAS実験への日本の貢献(2)

ATLASの解析に必要とされる計算機資源 (例 2012年の段階) CPU 200MSI₂₀₀₀ (~ 10⁵ core) DISK 110 PB この膨大な量を賄うため 世界中の計算機を結んでGRIDを用いて分散解析

> そして、物理解析の準備研究でも 多くの結果を出してきた。(後ほど) 素粒子理論研究者や若い研究者の刺激

(2009/4/1-3 実験・理論共同LHC物理研究会)

(日本の解析拠点:素粒子センターの計算機資源)

9) MSSMヒッグス

- - -

Decay Branching Fraction

重いものに良く結合する(はず)

標準理論の精密測定 M(H)=115-160GeV(95%CL)

2010年(承認 L=8-9 fb⁻¹) 2011年(まだ未承認 L=10-12fb⁻¹)も 115GeV付近のexcludeも可能? 上は150GeV**く**らいまで exclude可能? (こうやってみると130? 145?)

SM Higgs boson (H<140GeV)

Decay modes

	bb	ττ	γγ	WW	ZZ
gg→H	×	×	Discovery Mass Yt	Discovery spin0	140GeV以上 なら <mark>Discovery</mark> mass
VBF	×	Discovery Y ₇	Discovery	130GeV以上 なら <mark>Discovery</mark> spin0	140GeV以上 なら <mark>Discovery</mark> mass
ttH	Y_{t}	×			
WH	Y _b	×			

× : BG too high -----: σ * Br too small 青色 we can measure couplings and mass

VBF、GFが優等生、軽い場合いろいろ測定出来る。Lがあると Yの物理も広がる

下品ですが、Gauge bosonとしか結合しない時 fermiophobic Type (H<140GeV) Decay modes

	bb	ττ	γγ	WW	ZZ
gg→H	×	×	Discovery Mass Yt	Discovery spin0	140GeV以上 なら <mark>Discovery</mark> mass
VBF	×	Discovery Y ₇	Discovery	130GeVDLE #GDiscovery	140GeV以上 ならDiscovery mass
ttH	Y_{t}	×			
WH	Y _b	×			

fermionの質量起源が異なり、湯川結合が期待されたものかどうか? VBF tautau, ggHyyが期待通りか否か yyのBrが10倍になる。

反対にfermionとの結合が強い時 (H<140GeV)

Decay modes

	bb	ττ	γγ	WW	ZZ
gg→H	×	×	Mass Yt	Discovery spin0	140GeV以上 なら <mark>Discovery</mark> mass
VBF	×	Discovery Y _T	Discovery	130GeV以上 なら <mark>Discovery</mark> spin0	140GeV以上 なら <mark>Discovery</mark> mass
ttH	Y _t	×			
WH	Y _b	×			

× : BG too high -----: σ * Br too small

VBF tautau(第2世代 µµ)がenhance

Promising channels for SM Higgs boson (H>140GeV)

Decay modes

	bb	ττ	γγ	WW	ZZ
gg→H	×			Discovery	Discovery Mass, spin,etc
VBF	×			Discovery Gw ²	GwGz
ttH					
WH				Discovery	

× : BG too high ----: σ or Br too small

Blue: we can measure couplings and mass

ZZ,WWが優等生、でも全体に湯川関係の研究がしにくい gluon fusionの断面積が(Yt loop)の情報

SM Higgsの研究で有効なチャンネルの纏め

生成過程	崩壊過程	有効な領域とその効能		
Gluon Fusion	Η-> γγ	110-140GeV	<mark>発見</mark> Mass 測定 spin=0の傍証	
	H -> ZZ-> 4 I	140-1000	<mark>発見・</mark> Mass, spin, coupling測定	
	H-> WW	130–170 GeV	発見	
Vector Boson Fusion	Η-> τ τ	110-140GeV	<mark>発見 ·</mark> Mass, coupling測定	
	H -> WW	130-200GeV	<mark>発見</mark> ・W coupling測定	
	$H \rightarrow \gamma \gamma$	110-140GeV	<mark>発見</mark> (fake、高次効果研究) Mass測定	
WH	H-> bb	110-130GeV	Yb 測定	
ttH	H-> bb	110-130GeV	Yt 測定	

赤字が特に大切なチャンネルなので、今日絵をお見せします。

 $H \rightarrow \gamma \gamma$ トップやWのループ(符号逆)を介した崩壊 Br=2×10⁻³

高いエネルギー分解能 $\sigma(M\gamma\gamma)=1.4-1.5$ GeV バックグラウンドから分離可能

. . .

uc

ma

$H \rightarrow ZZ \rightarrow 4 leptons(4e,4\mu,2e2\mu)$

分解能は高い: σ=1.8-2GeV 1.5% 程度) (4e(ε=15%) < 2e2mu(ε=20%) < 4mu (ε=30%)

BG(ZZ)から綺麗に分離可能

140GeVより重い場合の First Discovery channel 200GeVより重いHiggsだとspin, CPの直接測定が可能 (Luminosoity100fb⁻¹程度が必要)

 $H \rightarrow WW^{(*)} \rightarrow l^+v l^-v$

Lepton はスピンの 関係で同じ方向に出やすい

Higgs Spin0

v起源のmETがある のでpeak作らない W→lvのアナロジー $M_T^2 = 2 P_T P_{...L} (1 - \cos \phi)$ Clear Jacobian Peak

M_H=170GeV

VBFの特徴と、Tの再構成が出来る面白い

high PT:重いものをexchange

カラーの交換がない。Rapidity Gapが観測され、 その間にhiggs(崩壊で出てきたもの)が見える

tauは軽い: τからのvは同じ方向にでる。(colinear近似) mETをそれぞれのτ方向に分割 崩壊前のτが再構成出来る 分解能は、σ~9GeV(mETの分解能)

SM Higgsの発見能力

いま整理した4つのモードが鍵 複数の過程をみているので安心 (物理、解析、検出器 すべて保険)

(1)M(h)>180GeVは、もっと楽
 (ZZが主になる不健全)
 (2) 10fb⁻¹でexcessがない
 NMSSM h->aa->4tau (OK)
 VBF WW→WW
 Non-resonantなexcess

H->γγがもっと良くなる。(ジェットの結果まだ) (3σ @L=10fb⁻¹ほど)

→2012年頃

L=10fb⁻¹程度で5σ以上

SM Higgs 測定精度

•Peakが立つ以上、簡単な話 (10fb⁻¹で%以下の精度)

•測定精度0.1% が期待 Calib 絶対精度が主な誤差.

ATLASのEMcalib.の目標は 0.02% (Wのmass精度向上)

LEPのOPALでEM calibrationやりましたが 0.1-0.2%を切るあたり からかなり大変でした。 (material lossの評価)

結合定数(相対比)の測定精度

結合定数の相対比も十分測定出来る。(Ybは弱い) SMからの数%程度以下のずれは検出出来ない。 (ただし、"new Physics" は運動学的にはLHCで直接見ることが可能。)

同じ生成過程の比較だけでなく、異なる生成過程の比較も含んでいる(Yt) ので、K-factorやスケール依存性、PDF依存性が系統誤差になっている。

y_bは50%近い(新しい解析(WH)でおそらく20%) (Mh=115-140GeV)

b

Boosted jetが、1,2,3 partonかが区別できる。(いろいろな応用 KK gluon -> tt, BHのBr, G->WWなどが可能)

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8

この緑の部分は、H_{SM}に似た性質のhが観測されるだけ。(SUSY decay)

2. SUSYの発見とその研究

銀河団同士のすれ違い(弾丸銀河団)

- 1) mSugraの簡単まとめをチョロッと
- 2) 生成と崩壊 期待されるevent topology
- 3) バックグラウンドとその評価
- 4) 発見能力のまとめ
- 5) 意外に変なのもいけるATLAS検出器
- 6) 質量などの測定

m SUGRAの簡単な纏め

 \sim

5つのパラメター:m_o, m_{1/2}, tanβ, A₀, sign(µ)
(mass @GUT) (VEV) (scalar 3点) (Higgsino mass)
DNの便利7
-般的な傾向
$$m^2(\tilde{g}) = (2.6m_{1/2})^2$$

•Coloured partciles (\tilde{g}, \tilde{q}) は重い $m^2(\tilde{u}_L) = m_0^2 + 6.3m_{1/2}^2 + 6.3m_{1/2}^2$

• $\tilde{\chi}_1^0$ はLSPで安定(R-parity) Cold DMの良い候補

•Higgsino mass ($|\mu|$) > 0.8m_{1/2}(Wino) (m₀>>m_{1/2}の場合以外) $\vec{\chi}_{1}^{0} \approx \tilde{B}^{0}, \vec{\chi}_{2}^{0} \approx \tilde{W}^{0}, \vec{\chi}_{1}^{\pm} \approx \tilde{W}^{\pm},$ $\tilde{\chi}_{3,4}^{0}, \vec{\chi}_{2}^{\pm} \approx \tilde{H}$ •第3世代の \tilde{f} は軽い (Yukawa+LR mixingの効果)

な公式: +0.35D $m^2(\tilde{u}_R) = m_0^2 + 5.9m_{1/2}^2 + 0.16D$ $m^2(\tilde{d}_1) = m_0^2 + 6.9m_{1/2}^2 - 0.42D$ $m^2(\tilde{d}_R) = m_0^2 + 5.8m_{1/2}^2 - 0.08D$ $m^2(\tilde{e}_I) = m_0^2 + 0.52m_{1/2}^2 - 0.27D$ $m^2(\tilde{e}_R) = m_0^2 + 0.15m_{1/2}^2 - 0.23D$ $m^2(\tilde{v}_I) = m_0^2 + 0.52m_{1/2}^2 + 0.50D$ $\left(D = M_Z^2 \cos 2\beta < 0 (Higgs)\right)$

・大きな生成断面積
・ただの強い相互作用: mass以外は SUSY parameter に強く依存しない。
・High x のPDFが大切 (gluon)
・K-factor 1.4 SUSY NLO

$m(\tilde{q}) = m(\tilde{g}) = 0.5TeV$	$\sigma \sim 100 \text{pb}$ $\tilde{g}\tilde{g}$ がmain
$m(\tilde{q}) = m(\tilde{g}) = 1TeV$	σ~3pb
$m(\tilde{q}) = m(\tilde{g}) = 2TeV$	σ~20fb ũũ,ũd ガmain

Strong interaction

EW interaction

Massの関係やB,WとXの関係、第3世代などが、モデル依存

 $\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}$ の崩壊モードについて

 $tan\beta >> 1$ の時 $\tilde{\tau}_1$ が軽くなり、Tへのdecay branchingが増える。 T-IDが大切。Higgsino成分が多くなると、然り。

SUSY**事象の**Event Topology

多段のカスケード崩壊が観測される。 (非常に特徴的)

大雑把に言うと

ヒッグスの様にピークでなくて大きなmE_Tの領域にエクセスとして観測: バックグラウンド(主にトップ生成とW生成、Z)の分布を理解することが重要 実験データ自体で評価することが鍵

Data Driven BG 評価

mET, Pt_jetと独立な量 MT

BGの基本はWのleptonic decay MT<Mw

期待される信号(2)

2lepton mode はバックグランドが低いので綺麗に見える。ただし信号も 少ないのでルミノシティーが必要

OS dilepton

SS dilepton

Main BG tt-> bblnln for OS and tt->bblnqq for SS bのsemileptic decayをlepton とmisIDした場合BG

ECM=10TeV L=200pb⁻¹ 発見能力(5σ)

ジェット+mET BG統計誤差11% BG評価系統誤差 35% (Meff>800GeV) ジェット+mET+レプトン BG系統 50% BG評価系統誤差 30%

来年計画通り動けば、gluino, squark ~800GeV程度まで5o発見可能: (BGもデータで、Noise,cosmic,beamなどの効果も評価している)

chargino ~ 250GeV Neutralino ~ 130GeV の DMのちょうどいいところ の大部分がカバーできる。 (シュミレーション遊びと思われるかも知れませんが)

宇宙線の起源のmET

Noise,CR,beam halo に対して非常にロバスト

意外に変なのもいけるATLAS検出器 Kink/Disappeared track

NLSP ($\tilde{\chi}_1^{\pm}$ (AMSB) or $\tilde{\ell}^{\pm}$ (GMSB)) が長い寿命 (c $\beta\tau$ >10mm)

Inner Detector (ATLAS)

e-IDの為の Transition Radiation Tracker (TRT)

73 層 drift tubesとして、 continuous tracking systemとして機能 ATLAS-にしかない特典。

6KeV High THS (0.07g/ccポリマー)

event display of AMSB event

π soft: chargino track が消えたようにみえている。消えた場所:寿命測定も可能

0.6 events/1fb⁻¹程度の低いBGレベル

Detector-origin background & inefficiency

- Noise hit on SCT makes fake track $(10^{-5}) \rightarrow$ background
- Noise hit on TRT makes inefficiency (2%)→ reduce the detection efficiency
 実機のノイズを調査して、このレベルをMCに入れて評価すると
 十分BGレベルは低い

1.

(奇麗か? 他のSUSY Decay chain? 長いか?) 2. mass やP_Tなどのkinematic distributionを作る

適当なdecay chainを選ぶ (key point!)

3. Edgeやendpointからmassの関係に束縛を与える

4未知数 vs 4条件 → model independentに massが決まる。(3-12%程度 L>100fb⁻¹ for 700-800 GeV squark, gluino)

他いろいろ提案されているが2jet (squark_R->jet+Nu1) 以外は理論屋のおもちゃ

DMを決める

$\frac{mmox}{mtage} = \frac{77.07}{0.03} = 0.08 (GeV) = 10 \text{ lat}} = \frac{10^{14}}{10^{14}} = \frac{77.07}{0.03} = 0.03 = 0.08 = 0.08$ $\frac{mtage}{mtage} = \frac{428.5}{1.4} = 4.3 = 4.5$ $\frac{mtage}{mtage} = \frac{300.3}{300.3} = 0.9 = 3.0 = 3.1$ $\frac{mtage}{mtage} = \frac{378.0}{1.0} = 1.0 = 3.8 = 3.9$ $\frac{mtage}{mtage} = \frac{378.0}{1.0} = 1.6 = 2.0 = 2.6$ $\frac{mtage}{mtage} = \frac{378.0}{1.0} = 1.6 = 2.0 = 2.6$ $\frac{mtage}{mtage} = \frac{30.6}{1.6} = 1.8 = 4.1$ $m(\tilde{g}_1) - m(\tilde{\chi}_1^0) = 106.1 = 1.6 = 0.1 = 1.6$ $m(\tilde{g}_1) - m(\tilde{\chi}_1^0) = 280.9 = 2.3 = 0.3 = 2.3$ $m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0) = 500.0 = 2.3 = 6.0 = 6.4$ $m(\tilde{g}_1) - m(\tilde{\chi}_1^0) = 103.3 = 1.5 = 1.0 = 1.8$ $m(\tilde{g}) - m(\tilde{b}_2) = 70.6 = 2.5 = 0.7 = 2.6$ 10^{-41} 10^{-42} 10^{-42} 10^{-44} $m(\tilde{g}_1) = \frac{10^{-44}}{10^{-44}}$	Variable	Value (GeV)	Stat (GeV)	Errors Scale (GeV)	Total
10^{-44} 10^{-44}	mmor	77.07	0.03	0.08	0.08
$\frac{10^{-44}}{10^{-44}}$ $\frac{300.3}{378.0}$ $\frac{10}{10}$ $\frac{3.0}{3.0}$ $\frac{3.0}{3.0}$ $\frac{3.0}{3.0}$ $\frac{1.0}{3.8}$ $\frac{3.0}{3.1}$ $\frac{1.0}{3.8}$ $\frac{3.0}{3.1}$ $\frac{3.1}{3.1}$ $\frac{3.0}{3.0}$ $\frac{3.1}{3.1}$ $\frac{3.0}{3.0}$ $\frac{3.1}{3.1}$ $\frac{3.0}{3.1}$ $\frac{3.1}{3.1}$ $$	mmax	428.5	1.4	4.3	4.5
$\frac{m_{ty}}{m_{ty}} = \frac{378.0}{201.9} = \frac{1.0}{1.6} = \frac{3.8}{2.0} = \frac{3.9}{2.6}$ $\frac{m_{tet}}{m_{tet}} = \frac{201.9}{1.6} = \frac{1.0}{2.0} = \frac{2.6}{2.6}$ $\frac{m_{tet}}{m_{tet}} = \frac{1.0}{1.6} = \frac{1.0}{1.16} = $	mlow	300.3	0.9	3.0	3.1
$\frac{m_{H_{1}}}{m_{H_{2}}}$ $\frac{201.9}{183.1}$ $\frac{1.6}{3.6}$ $\frac{2.0}{1.8}$ $\frac{2.6}{m_{H_{2}}}$ $\frac{m(\ell_{L}) - m(\tilde{\chi}_{1}^{0})}{106.1}$ $\frac{1.6}{1.6}$ $\frac{1.8}{1.8}$ $\frac{4.1}{1.1}$ $\frac{m(\ell_{L}) - m(\tilde{\chi}_{1}^{0})}{106.1}$ $\frac{280.9}{2.3}$ $\frac{2.3}{0.3}$ $\frac{2.3}{2.3}$ $\frac{m_{TT}}{m_{TT}}$ $\frac{80.6}{5.0}$ $\frac{5.0}{0.8}$ $\frac{5.1}{5.1}$ $\frac{m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_{1}^{0})}{102.3}$ $\frac{424.2}{10.0}$ $\frac{4.2}{10.9}$ $\frac{10^{-41}}{10^{-42}}$ $\frac{10^{-44}}{10^{-44}}$ $\frac{10^{-44}}{10^{$	mhigh	378.0	1.0	3.8	3.9
$\frac{m_{H_{eff}}^{m_{eff}}}{m(\ell_L) - m(\tilde{\chi}_1^0)} = \frac{183.1}{106.1} = \frac{3.6}{1.6} = \frac{1.8}{0.1} = \frac{4.1}{1.6}$ $m_{Trr}^{max}(\tilde{\chi}_2^0) = \frac{230.9}{2.3} = \frac{2.3}{0.3} = \frac{2.3}{2.3}$ $m_{Trr}^{max} = \frac{80.6}{5.0} = \frac{5.0}{0.8} = \frac{5.1}{5.1}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = \frac{424.2}{10.0} = \frac{10.3}{10.3} = \frac{1.5}{1.5} = \frac{1.0}{1.0} = \frac{1.8}{1.8}$ $m(\tilde{g}) - m(\tilde{b}_1) = \frac{10.3}{10.3} = \frac{1.5}{1.5} = \frac{1.0}{1.0} = \frac{1.8}{1.8}$ $m(\tilde{g}) - m(\tilde{b}_2) = \frac{10^{-41}}{10^{-42}}$ $m(\tilde{g}) - m(\tilde{b}_2) = \frac{10^{-41}}{10^{-43}}$ $m(\tilde{g}) - \frac{10^{-44}}{10^{-44}}$ $m(\tilde{g}) - \frac{10^{-44}}{10^{-44}}$	mmin	201.9	1.6	2.0	2.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	min	183.1	3.6	1.8	4.1
$m_{TT}^{max}(\tilde{\chi}_{0}^{0}) = 280.9 = 2.3 = 0.3 = 2.3$ $m_{TT}^{max} = 80.6 = 5.0 = 0.8 = 5.1$ $m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_{1}^{0}) = 424.2 = 10.0 = 4.2 = 10.9$ $m(\tilde{g}) - m(\tilde{b}_{1}) = 103.3 = 1.5 = 1.0 = 1.8$ $m(\tilde{g}) - m(\tilde{b}_{2}) = 70.6 = 2.5 = 0.7 = 2.6$ 10^{-44} 10^{-44} 10^{-44} 10^{-44} $m(\tilde{g}) = 10^{-44}$ $m(\tilde{g}) = 10^{-44}$ $m(\tilde{g}) = 10^{-44}$	$m(\ell_L) - m(ilde{\chi}_1^0)$	106.1	1.6	0.1	1.6
$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$m_{\mathcal{U}}^{max}(ilde{\chi}_4^0)$	280.9	2.3	0.3	2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m_{\tau\tau}^{max}$	80.6	5.0	0.8	5.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m(\tilde{g}) - 0.99 \times m(\tilde{\chi}_1^0)$	500.0	2.3	6.0	6.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m(\tilde{q}_R) - m(\tilde{\chi}_1^0)$	424.2	10.0	4.2	10.9
$m(g) - m(b_2)$ 70.6 2.5 0.7 2.6 10^{-41} http://dmtools.brown.edu// Gaitskell,Mandic,Filippini 10^{-42} 10^{-43} $x \times x$	$m(\bar{g}) - m(b_1)$	103.3	1.5	1.0	1.8
10 ⁻⁴¹ 10 ⁻⁴² 10 ⁻⁴² 10 ⁻⁴³ 10 ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴ To ⁻⁴⁴	$m(g)-m(b_2)$	70.6	2.5	0.7	2.6
					-

Modelを仮定 分布のedge→ parameter →

 $\Omega_{\chi}h^2 = 0.1921 \pm 0.0053$ $\log_{10}(\sigma_{\chi p}/pb) = -8.17 \pm 0.04$

DM particle mass m_{χ} (GeV)

赤 最新Xenon10(Xe2相)

一般に

tan_{β=35}の時のgluinoのdecay chain

•由緒正しい崩壊以外に

第3世代が軽い場合 gluino-> b sb t st
がかなり起きる。
(phase space)
Br = 0.1-0.6
st, sb は大きなyukawa
を持っているのでHiggsino
によくくっつく。
(ダイアグラム)

Bjetが増えて、 jet Multiplicityが増える。 この領域にパラメータが あると非常に特徴的

LHCだけでSUSYの構造を 解明することは無理(モデル依存)

A tanβ=35の時のsquark_Lのdecay chain

m0が小さい2body decay chainの時可能

3.TeVスケールの余剰次元

四(余?)次元ポケット

- 1) **簡単なイントロ**
- 2) LED KK graviton
- 3) ミニブラックホール
- 4) KK graviton resonance

何故、重力が他の3つの力と較べて10-40も弱いのか?

重力子は、全空間(bulk)を自由に運動、他の素粒子は、 3次元の膜にはりついている。 重力子がこの膜に来たときだけ感じる (重力が見かけ上、弱くみえる。)

余剰次元がどうなっているか? flatなのかwarpしているのか?

(1)1/R << TeV G:たくさんのKK振動モード(それを足し合わせると、Gは強い結合)
(2) 1/R ~ TeV ECM > Vd -> BH or string ball (兼田)
(3) 変形ですが、SM粒子も余剰次元方向に KK mass (UED) 縮退したSUSY (岡村、寺師)

(1) KK graviton $gg \rightarrow gG(\overline{tJ} \widetilde{y} \underline{y} \underline{y})$

Gの結合が強くなる。gの代わりにGが放出:missing.

\mathbb{E}_T distribution

Events for HL, 100 fb $^{-1}$

for $E_T^{jet} > 1 \text{ TeV}$

$jZ(\nu\nu)$	$jW(\tau\nu)$	$jW(e\nu)$	$jW(\mu\nu)$
523	151	12	14

	δ	M_D (TeV)	Events	$S_{max} = S/\sqrt{B}$
	2	5	1430	61.4
		7	366	13.8
		9	135	5.1
	3	5	705	26.7
		7	131	5.0
00	4	5	391	14.8
V)		7	53	2.0

(2)ミニブラックホール

余剰次元nまで含めた重力定数 $M_{\rm P}(\text{TeV} \textbf{I} - \textbf{I} - \textbf{O} \textbf{I} \textbf{D} \textbf{D} \textbf{D} \textbf{D})$ シュバルツシルド半径 $R_{\rm S} = \frac{1}{\sqrt{\pi}M_{P}} [\frac{M_{\rm BH}}{M_{P}} (\frac{8\Gamma(\frac{n+3}{2})}{n+2})]^{\frac{1}{1+n}}$

BHになる下限 M_{TH}~4-10M_P

Rsより小さい距離で2つのパートンが 衝突すると ミニブラックができる。

衝突するパートンの不変質量 M_{BH} (Black Holeの質量) M_{BH} >> M_P でないと量子重力の効果大 予言能力ない 別冊サイエンス156より

(1) 生成 M>M_{TH} (2)毛を失い (3)スピンを失い (4)ホーキング輻射 (5) Mp付近->量子重力
 これ以下だと string ball?
 熱化しないと2body?
 効果が重要

$$\begin{split} \mathbf{M}_{\mathsf{P}} = 1 \, \mathsf{TeV}, \ \mathbf{M}_{\mathsf{BH}} = 5 \, \mathsf{TeV} \\ \mathsf{n} = 2 \, \boldsymbol{\mathcal{V}} = \boldsymbol{\mathcal{V}} = \boldsymbol{\mathcal{V}} \end{split} \qquad T_{H} = M_{P} \left[\frac{M_{P}}{M_{BH}} \left(\frac{n+2}{8\Gamma((n+3)/2)} \right) \right]^{\frac{2}{1+n}} \quad \frac{dN}{dE} \propto \frac{(E/T_{H})^{2}}{\exp(E/T_{H}) + c} \end{split}$$

Particle数は一般に大きい (SUSYとの区別 mETで出来る。) lepton/gamma

$pp \rightarrow G^* \rightarrow e + e -$ が一番いいチャンネル:

Trackの分解能 $\Delta p/p \sim p$ で高い領域では悪くなる(µ駄目) カロリメータ分解能 $\Delta E/E \sim 1/SQRT(E)$ (統計) で良くなる gg \rightarrow G^{*} \rightarrow YY の角度分布がBGに近くなる

5.Topと(B-Physics)

Semi-leptonic decay channel •Br~2*0.7*0.2=0.28 •Jetの組み合わせの不定性小さい

PT>20(mu),25(e) mET>20GeV At least 4jet PT>40GeV 2Bjet

$$\chi^{2} = \frac{(M_{jj}(\alpha_{E_{j1}}, \alpha_{E_{j2}}) - M_{W}^{PDG})^{2}}{(\Gamma_{W}^{PDG})^{2}} + \frac{(E_{j1}(1 - \alpha_{E_{j1}}))^{2}}{\sigma_{1}^{2}} + \frac{(E_{j2}(1 - \alpha_{E_{j2}}))^{2}}{\sigma_{2}^{2}}$$

 α_{E1}, α_{E2} Jet Rescaleing

近いbをえらぶ

Kinematic に余裕、M(tt)=500GeV付近が多い、topは結構boostしている。

Error Source	$\Delta m(GeV)$
統計(1fb ⁻¹)	0.4
q calibration不定	0.2 for 1%
ISR/FSR	0.3
やり方	0.1
b calibration不定(1%)	0.7 for 1%
BG	0.0
合計	~1GeV

鍵はjet energy scale のcalibration

FCNC の感度

SMの予言:10⁻¹⁰と小さいので、topの重要な物理

	$t \rightarrow Zc$	$t \rightarrow \gamma c$	$t \rightarrow gc$
Br (L=10fb ⁻¹)	5.1×10 ⁻⁴	1.2×10 ⁻⁴	4.6×10 ⁻³
Br(L=100fb ⁻¹)	1.6×10^{-4}	3.8×10 ⁻⁵	1.4×10^{-3}

6. ATLAS検出器のパフォーマンス

中央飛跡検出器で とえられた宇宙線

デザインLの1/100の

僅かL=1fb⁻¹でも膨大な統計量のデーターが観測

代表的な過程	Event rate	初めの1年で	他との比較	
	2×10^{32}	$L=1 fb^{-1}$	(2007年までの積算)	
W→ev	3Hz	107	10 ⁷ Tevatron-2	
Z→ee	0.3Hz	106	10 ⁷ Tevatron-2	
tt	0.2 Hz	106	10 ⁴ Tevatron-2	
bb $P > 10 GeV$	20KHz	2×10 ¹¹	10^9 Balla	
$100. T_{\rm T} > 1000 v$	(HLT 10Hz)	(10⁸ inc. di-µ)	IU Delle	
Higgs(130GeV)	20個/時	5×10 ⁴		
SUSY(1TeV)	2個/時	5×10 ³		

この表が示す様に、LHCは、Top-factory、B-factoryであり、 同時に Higgs/SUSY factoryである。 Calibration やControl sampleも十分出来る。

ε=70-80%

Tag-Probe(Z→eeの一方tagしてもう一方からefficiencyを評価する)

Shower leak,とdead material lossをMCを使って補正して

EM calibration

DY Z->ee 1Hz

•Δη×Δφ=0.2×0.4

•Beam test のデータで2%
非一様性 0.5%

•1HzでZ→ee
250個/Sect. 数日で
=> これで0.3%

Photon ID

LLR>10 ε=85 %(PT>25GeV Fake Rej. 2600-2900)

高くなると rejectionが少しわるくなる。

Photon Conversion Recover

ケーブルなど 1-1.5X0(局在)

結果、conversionの原点をplotするとmaterial分布が得られる

 (1) 2本のelectronのvertex find 高精度のtracking情報が必要(Pixel,SCTで有効 R<40cm: Early conv.)

(2) Electron likeなsingle trackが 途中から ずれてあらわれる. e-ID を使う:TRT

PT=20GeV Photonにたいして

muon system

eta=0,1.1にすきまがあるのでこの領域はわるい。

muon ID $\epsilon = 87\%$ (good) Fake. 10⁻⁴ (b jet)

Pt resolution 2.5-3%

Tau ID

- (1) EM cluster 細い
- (2) Isolateしている
- (3) N=1,3prong

M_{trk} [GeV/c²]

2.5

0.04

0.02

Q²

Jet

100GeVに対して 8%の分解能、energy scale OK

JetOcalibration

γ+J Z+Jなどのサンプルも豊富にある

Beam testの結果で約5-10%の精度
T→hv E/p=1 (bias < 0.8% π⁰の混入) E=20-250GeVの領域 320kevent/10fb⁻¹
tt→bbWWのW→jjを使う。一年で45k E<200GeVまで。高いと1本に見える。
Zj Zとjetのバランスでhigh Ptの領域

=>1%の精度が可能 これがネックにならない。

-0.5

0

0.5

 $(p_T^Z - p_T)/p_T^Z$

0

•2009-10 年実験開始 calibration OK (EM 0.1% Had 1%) すさまじい統計量の観測

- Higgsは、2012年頃(10fb⁻¹)で5σ発見可能
 測定には、数年必要。質量 0.1%以下、couplingの精度 20%程度
 (比は 10%程度) MSSM Higgsも1年で。
- SUSYも1、2年で発見可能。2012年で2TeVまで発見可能 (最終的に3.5TeV付近まで排除可能:Key ΔM) 本当にLHCだけでSUSYは理解できるか?
- ・数TeVまでの余次元がある場合も発見可能(いろいろな信号)
- •それ以外も(Little Higgs, TC,など)数TeVまでの new physicsもちゃんと発見できる。

•Top mass 1GeV以下の精度で測定

おまけ

B-physics at ATLAS/LHCb

(1) $B_d \to J/\psi(\mu^+\mu^-)K_S^0(\pi^+\pi^-)$ を用いたsin2βの測定

HLT:Pt>6GeV以上の2µ約10Hzで収集

•K⁰_sが再構成出来て、B_dが再構成出来る。 S/B=32と非常に高い。
•反対側のflavour tagは、semi-leptonic decayの Leptonをtagする方法(εD²=0.7%)とleading πを使 う方法(εD²=2.4%)でtagする。
•250k event/30fb⁻¹と統計も高い

→ ∆sin2β=0.016 (stat.) +-0.005(sys.) 2%の精度でsin2βが測定可能

上には上が、、 LHCbは、B-physicsに特化した検出器: low Pt trigger, RICH:K,π,e,µ分離 119kevent/2fb⁻¹で、2%の測定を行う。

(約3年の測定)

(2) Physics of B_s meson

Δm_s from $B_s \rightarrow D_s$ p and $B_s \rightarrow D_s$ a₁

・30ps⁻¹まで検出可能(LHCb 58ps⁻¹) ・0.05ps⁻¹の精度で測定可能 △m_s ~12ps⁻¹

(3) Rare decay $Br \sim 10^{-9}$

	Signal Bs->μμ	Signal Bd->μμ	BG
ATLAS	92	14	660

1.標準モデルヒッグス研究の概要

Gluon Fusion

Vector Boson Fusion

 1.gluonは、massless
 higgsと直接接合しない。
 top のloopで(Yt)
 2.gluon多いのでσ大 (次のページ)
 3.Higgs だけ BGが厳し い(lepton, γ 終状態)

W・Zとの随伴生成

Top/bottomとの随伴生成

1.LEP,Tevatronの 主チャンネル。 LHCでは、副。 2.W->Inuでtrigger WH->WWW 3.H->WW 100%Br at Mh=170GeV

 1.Topは特徴的な ので発見しやすい。
 2. Topの湯川結合 測定チャンネル
 3. MSSM Higgsで は(tan β)² bbH/A

M_H [GeV]

4: MSSM Higgs

・h,H⁰,A⁰,H⁺⁻の4種類 ・Tree levelでtanβとM_Aの 2 parameterで記述

Aが大きい hはSMと同じ

d

V

gg
$$\rightarrow$$
bbH/A $\rightarrow \tau \tau , \mu \mu , (bb)$

← µØyukawa*tanβ

第2世代のYukawaを見るチャンス

Pileup+noise RMS 0.4GeV(3*7 cell)

Missing Etの評価 基本的に全てのカロリーメータがwell calibratedで ないといけない。 Resolutionの確認は...

Hcal

•エンドキャップ Cu + L.Ar 14λ η=1.5-3.2 0.1*0.1 for < 2.5, 0.2*0.2 for 2.5-3.2 4層

•Forward Cu+W+W 3層 + L.Ar 0.5mmギャップ 10λ η=3.1-4.9 0.2*0.2

ATLAS Level-1 Trigger (KHz)

Selection	High-p _T Thresholds	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
MU20	(20)	0.8	4.0
2MU6		0.2	1.0
EM25I	(30)	12.0	22.0
2EM15I	(20)	4.0	5.0
J 200	(290)	0.2	0.2
3J 90	(130)	0.2	0.2
4J 65	(90)	0.2	0.2
$\mathbf{J60} + \mathbf{xE60}$	(100+100)	0.4	0.5
TAU25 + xE30	(60+60)	2.0	1.0
MU10 + EM15I		0.1	0.4
Others (pre-scal	es, calibration, ?)	5.0	5.0
Total		~ 25	~ 40

ATLAS High Level Trigger (Hz)

Selection	2 x 10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electron	e25i, 2e15i	~40
Photon	γ60i, 2γ20i	~40
Muon	μ 20i , 2 μ10	~40
Jets	j400, 3j165, 4j110	~25
Jet & E _T ^{miss}	j70 + xE70	~20
tau & E _T ^{miss}	$\tau 35 + xE45$	~5
b-physics	$2\mu 6$ with $m_B/m_{J/\psi}$	~10
Others	pre-scales, calibration,	~20
Total		~200

High Lumisonityで?

Selection	$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	10^{34} cm ⁻² s ⁻¹
Electron	e25i, 2e15i	e30i, 2e20i
Photon	γ 60i , 2γ20i	γ 60i , 2γ20i
Muon	μ 20i , 2 μ10	μ 20i , 2 μ10
Jets	j400, 3j165, 4j110	j590, 3j260, 4j150
Jet & E _T ^{miss}	j70 + xE70	j100 + xE100
tau & E _T ^{miss}	τ 35 + x E45	$\tau 60 + x E 60$
Muon & electron	μ10 + e15i	μ10 + e15i
b-physics	$2\mu 6$ with $m_B/m_{J/\psi}$	$2\mu 6$ with m_B

犠牲にするのは、主にjets lepton/photon/missingは大きく変わらない