SLHCに向けての (ATLAS) 検出器アップグレード

花垣和則 (大阪大学)

revised forecast peak & integrated luminosity evolution

present and future injectors

Proton flux / Beam power

Roland Garoby, LHCC 1July '08

* ヒッグス

- self coupling ?
- Y_t, Y_b ?

* 超対称性その他

Process	LHC	SLHC	DLHC	LC	CLIC
	14 TeV	14 TeV	28 TeV	0.8 TeV	5 TeV
	100 fb ⁻¹	1000 fb^{-1}	100 fb ⁻¹	500 fb ⁻¹	1000 fb^{-1}
Squarks (TeV)	2.5	3	4	0.4	2.5
$W_{L}W_{L}(\sigma)$	2	4	4.5	6	90
Z' (TeV)	5	6	8	8^{\perp}	30⊥
Extra-dimens.	9	12	15	5–8.5⊥	30–55⊥
scale (TeV)					
q* (TeV)	6.5	7.5	9.5	0.8	5
Compositeness	30	40	40	100	400
scale (TeV)					
TGC,	0.0014	0.0006	0.0008	0.0004	0.00008
λ_{γ} (95%CL)					

PHASE I

- * 基本的には、ATLAS, CMSともに(最内層の)Pixelが死んで しまうので、それに対する対策
 - 300-400 fb⁻¹まではOK
- ◆シャットダウンは6-8ヶ月間(2014?)
 - ATLASは交換に時間がかかるので、ビームパイプを細い物に交換し、パイプと現存する検出器の間に1層だけ加える(Insertable B Layer, IBL)
 - CMSはpixelを全部交換
- ◆ ルミノシティは3x10³⁴(現行のデザインは1x10³⁴)
 TriggerとDAQは少しいじるが、他は変更無し

PHASE II -- 所謂 SUPER LHC

- * 2017-18が今のところの予定
 - 1年遅らすかどうか議論中
- ◆ ルミノシティ1×10³⁵ (テクノロジーは議論中)
 - Bunch crossing あたり~400の衝突
- * ATLASの主な変更点
 - Tracker 全部を交換、プラスbeam pipe
 - Barrel calorimeter は electronics/readout の変更
 - Forward calorimeter は一部交換
 - Forward muon chamber もたぶん交換
 - トリガーとDAQ

TRACKER

- All silicon
 - 4 layers of pixel,
 3 short and 2 long strips
 - Layout optimization on going
 — Long strip may have too high occupancy

TRACKER

* Sensor

Many technology choice for pixel

- Needs to survive up to a few $10^{16} n_{eq}/cm^2$
- ▶ 3D, Diamond, planar n-in-n, n-in-p, etc.
- Probably n-strip in p-bulk for strip

ASIC for readout

- Prototyping on going for both pixel and strip
- Hybrid/Stave design under consideration

Cooling

- CO2?
- Powering
 - Serial or DC-DC?

CALORIMETER

- Detector itself should be OK, except for forward Liquid Ar calorimeter
 - High current, ion built up in the gap, boiling of LAr
 - Replacement takes \geq 14 months
 - New small detector in the very forward region
- Front-end electronics
 - Bandwidth & latency
 - More granularity for trigger decision
 - Full replacement, not an upgrade

MUON DETECTOR

- We don't know the background level yet...
- If background level is as predicted,
 - Only forward chambers need to be replaced
- If background is ×5,
 - Most chambers need to be replaced
- Have to measure background level anyway
- Smaller chamber preferable for more shielding
 - Technology choice
 - Micromegas/thin gap chamber/mini drift tube/etc.
- Redesign of the electronics

REAM DIDE

Currently Be near the IP, and stainless steel otherwise
Stainless Steel part to Be

A beryllium beampipe

A beryllium beampipe is also the only way of significantly reducing the background in the muon spectrometer.

SUMMARY

- Phase I --- TDR next year (?)
 - 6 to 8 months in 2014 shutdown
 - Pixel sensor survives to 300-400 fb⁻¹ (or more)
 - Addition (Replacement) of the innermost layer at ATLAS (CMS), and new beam pipe
- Phase II --- LOI next year (?)
 - 2017-18, possible one year delay
 - Replacement of the whole tracker (ATLAS & CMS)
 - Forward calorimeter
 - Trigger and DAQ
 - Some electronics
 - Forward muon chambers plus the others ?

BACKUP

LHC upgrade stages "phase 1" ~2013, 2x10³⁴ cm⁻²s⁻¹: new NbTi triplets, D1, TAS, $\beta^* \sim 0.25 - 0.3 \text{ m in IP1 \& 5},$ beam from new Linac4 + injector "phase 2" ~2017, ~10³⁵ cm⁻²s⁻¹: upgrade possibly Nb₃Sn triplet & $\beta^* \sim 0.15$ m complementary measures 2010-2017: e.g. long-range beam-beam compensation, crab cavities, advanced collimators, crab waist? [, coherent e- cooling??, e- lenses??]

phase-2 might be just phase 1 plus complementary measures longer term (2020?): energy upgrade, LHeC,...

LHC "phase-2" scenarios early separation (ES) $\beta^* \sim 0.1 \text{ m}, 25 \text{ ns}, N_b = 1.7 \times 10^{11},$ detector embedded dipoles full crab crossing (FCC) $\beta^* \sim 0.1 \text{ m}, 25 \text{ ns}, N_b = 1.7 \times 10^{11},$ local and/or global crab cavities large Piwinski angle (LPA) $\beta^* \sim 0.25 \text{ m}, 50 \text{ ns}, N_b = 4.9 \times 10^{11},$ "flat" intense bunches low emittance (LE) $\beta^* \sim 0.1 \text{ m}, 25 \text{ ns}, \gamma \epsilon \sim 1-2 \mu m, N_b = 1.7 \times 10^{11}$