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Abstract

Abstract

The Higgs boson is a crucial part of the Standard Model (SM) of particle physics,

to explain the origin of the mass of elementary particles. The Large Hadron Collider

(LHC) at CERN discovered the Higgs boson in 2012, and since then, detailed studies

of the Higgs boson are being performed. Thus, for precise measurement of the Yukawa

coupling of the Higgs boson to bottom and charm quarks, the identification of the Higgs

boson, especially those generated with high transverse momentum, is a crucial part of the

physics program. Recently, a novel𝑋 → 𝑏 ̄𝑏/𝑐 ̄𝑐 tagger is developed to tagging large-𝑅 jets

containing boosted 𝑏-hadrons or 𝑐-hadrons, which may be of great importance for future
Higgs studies.

This thesis covers the introduction, calibration, and improvement attempts of this

novel 𝑋 → 𝑏 ̄𝑏 tagger, called GN2X. The GN2X tagger efficiency is determined using

only MC, thus data-to-simulation efficiency correction factors (scale factors) need to be

extracted. The in-situ calibration of the 𝑋 → 𝑏 ̄𝑏 tagger is performed to determine the

scale factors using 𝑍(→ 𝑏 ̄𝑏) + jets and 𝑍(→ ℓℓ) + jets events for 𝑝𝑇 > 450GeV with

data collected by the ATLAS experiment in Run 2 (140 fb−1). The dominant background,

dijet events, is modeled by fitting the data directly using an exponentiated polynomial or

polynomial function. The scale factors at 60% working point are measured to be 1.30 ±
0.50 for 450 < 𝑝𝑇 < 500GeV, 0.83 ± 0.27 for 500 < 𝑝𝑇 < 600GeV, and 0.87 ± 0.27 for
600 < 𝑝𝑇 < 1000GeV.
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Chapter 1 Introduction

Chapter 1 Introduction

In this chapter, the SM is introduced in Section 1.1, and the Higgs measurement at

LHC is summarized and the role of the VH channel is briefly described in Section 1.2. In

Section 1.3, the boosted Higgs is discussed, in particular, 𝐻 → 𝑏 ̄𝑏/𝑐 ̄𝑐. Then, the purpose
of this thesis is given. Section 1.4 explains the structure of this thesis.

1.1 The Standard Model

1.1.1 Elementary Particles

The Standard Model (SM) of particle physics describes elementary particles and in-

teractions between them. In SM, there are two types of elementary particles, fermions

and bosons, which are shown in Figure 1.1.

Quarks and leptons are fermions, which have 1/2 spin and build matter. There are

3 generations of quarks and leptons, and each particle has an antiparticle. The first gen-

eration of quarks and leptons are the lightest and most stable of three generations. The

second and third generations are heavier and except neutrinos, they can decay into the first

generation, which means that they can only be produced in high-energy environments.

Gauge bosons are bosons, which have 1 spin and mediate interactions. There are 3

forces in the SM: the electromagnetic force, the weak force and the strong force, which

are mediated by photon (𝛾), weak bosons (W±,Z) and gluons (g) respectively. Graviton
(G) is the hypothetical gauge boson of gravity, which is not included in the SM.

The Higgs boson (H) is the only scalar boson in the SM. It has 0 spin is responsible

for the mass of elementary particles.

1.1.2 Gauge Theory

The SM is a gauge theory with the symmetry group SU(3)𝐶 × SU(2)𝐿 × U(1)𝑌 . The

SU(3)𝐶 group describes the strong interaction, which is mediated by gluons and acts on

particles with color charge. The SU(2)𝐿 ×U(1)𝑌 group describes the electroweak interac-

tion, which is mediated by the weak bosons and photons and acts on particles with weak

isospin and weak hypercharge.

1
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Figure 1.1 Elementary particles in the SM [1].

1.2 The Higgs Boson

1.2.1 Higgs Boson Measurement

The Higgs boson was the last missing piece of the SM, which was discovered by

ATLAS and CMS experiments in 2012 [2-3]. The mass of the Higgs boson is measured

to be 125.11 ± 0.11 GeV [4]. The total width is measured to be 4.5+3.3
−2.5 MeV [5].

For the discovery of Higgs, evidence for Higgs was present in three decay modes

𝐻 → 𝛾𝛾 , 𝐻 → 𝑊 𝑊 (∗) → ℓ𝜈ℓ𝜈 and 𝐻 → 𝑍𝑍(∗) → 4ℓ in both experiments was

present [6-11]. Then, the 𝐻 → 𝜏𝜏 was observed in 2016 [12] by CMS and in 2018 by

ATLAS [13]. After that, Higgs production in association with a top quark-antiquark pair

(ttH) [14-15] and the 𝐻 → 𝑏 ̄𝑏 was confirmed in 2018 [16-17]. The summary of the

measured couplings to gauge bosons and fermions is shown in Figure 1.2. 𝐻 → 𝜇𝜇 and

𝐻 → 𝑐 ̄𝑐 are not confirmed yet and the observation of such decays is one of the most

important topics in Run 3 (2022-2025) and High-Luminosity LHC (HL-LHC, 2029-).

1.2.2 Higgs Production and Decay

The main Higgs production mechanisms at the LHC are as follows:

• gluon-gluon fusion (ggF)

2
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• vector boson fusion (VBF)

• associated production with a vector boson (VH)

• associated production with a top quark pair (tt̄H)

The detailed Feynman diagrams of these processes are shown in Figure 1.3. The

cross-sections for the production of an SM Higgs boson as a function of its mass are

shown in Figure 1.4(a). Table 1.1 shows the Higgs boson production cross-sections and

relative uncertainties for a Higgs boson mass of 125 GeV at √𝑠 = 7, 8, 13 and 13.6 TeV.

Table 1.1 Production cross-sections of the 𝑚𝐻 = 125 GeV Higgs boson at the LHC [20].

√𝑠 (TeV)
Production cross-section (pb) for 𝑚𝐻 = 125 GeV

ggF VBF WH ZH tt̄H Total

7 16.9+5.5%
−7.6% 1.24+2.2%

−2.2% 0.58+2.2%
−2.3% 0.34+3.1%

−3.0% 0.09+5.6%
−10.2% 19.1

8 21.4+5.4%
−7.6% 1.60+2.1%

−2.1% 0.70+2.1%
−2.2% 0.42+3.4%

−2.9% 0.13+5.9%
−10.1% 24.2

13 48.6+5.6%
−7.4% 3.78+2.1%

−2.1% 1.37+2.0%
−2.0% 0.88+4.1%

−3.5% 0.50+6.8%
−9.9% 55.1

13.6 54.7+5.6%
−7.4% 4.28+2.1%

−2.1% 1.51+1.8%
−1.9% 0.99+4.1%

−3.7% 0.61+6.9%
−9.8% 62.1

The Higgs boson branching ratios and production cross-sections are shown in Figure

3
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Figure 1.3 Feynman diagrams of the main Higgs boson production modes at the LHC [19].

1.4(b). 𝐻 → 𝑏 ̄𝑏 is the dominant decay mode of the Higgs boson, which is 58.2% for

𝑚𝐻 = 125 GeV. ggF and VBF are the 1st and 2nd largest cross-sections. However, they
can not be used for 𝐻 → 𝑏 ̄𝑏 search, because of the large amount of multijet background.
Therefore, the VH channel, the 3rd largest cross-section, is the most promising channel

to observe the 𝐻 → 𝑏 ̄𝑏 decay. It has about 1 pb cross-section in the SM. In this channel,

signal events can be selected efficiently using final state leptons from the vector boson

decay.

1.2.3 VH Channel

In the VH channel, the Higgs boson is produced in association with a vector boson.

There are three channels depending on number of reconstructed leptons:

• VH → 𝜈𝜈qq (V=Z, 0-lepton channel)
• VH → ℓ𝜈qq (V=W, 1-lepton channel)

• VH → ℓℓqq (V=Z, 2-lepton channel)
Using the decay products of the gauge boson (V), we can trigger the events and also

reduce the background. VH channel is the most sensitive Higgs production channel,

and thus, it is one of the promising channels to observe charm Yukawa coupling using
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Figure 1.4 Higgs boson production cross-sections (left) and branching ratios (right) as a function
of the Higgs boson mass [20].

a boosted event topology, which is explained in the next section.

1.3 Boosted Higgs

The LHC’s high collision energies can lead to the generation of Higgs bosons with

transverse momenta (𝑝𝑇 ) significantly higher than their mass. There are two kinds of

event topologies possible for the 𝑉 𝐻 channel, the boosted and resolved topologies, as

Figure 1.5 shows. The boosted Higgs bosons exhibit highly collimated decay products,

and in cases of fully hadronic decays, they can be reconstructed as a single hadronic jet.

For boosted 𝐻 → 𝑏 ̄𝑏/𝑐 ̄𝑐 decays, it’s reconstructed as a large-𝑅 jet and the 𝑏/𝑐-quarks are
reconstructed as subjets. On the contrary, with the resolved topology, the Higgs boson

candidate was reconstructed from two 𝑏-tagged small-𝑅 jets in the event. Due to the

highly collimated 𝑏-jets at large transverse momentum, with the resolved topology, the
Higgs boson candidate reconstruction efficiency was highly degraded.

Figure 1.5 Boosted and resolved topologies.

In addition, during years of runs and upgrades, the LHC has been operated from√𝑠 =

5
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7 to 13.6 TeV and the production of the Higgs boson at 𝑚𝐻 = 125 GeV from pp collisions

increased from 19.1 fb to 55.1 fb. A 400 fb−1 total integrated luminosity is expected to

be collected by the end of Run 3 1. In the future, as the LHC gears up (HL-LHC), the

instantaneous luminosity will increase, and more data of 3,000 fb−1 will be collected,

enabling further observation and study of bottom or charm quark Yukawa couplings.

The expected number of events fromWH/ZH can be evaluated usingMC samples. By

using 𝑍𝐻 MC sample shown in Fig 1.6, the efficiency of the boosted Higgs (𝑝𝑇 > 450
GeV) is estimated as about 0.33 %., Because 𝑍 and 𝑊 mass are similar, this value is

assumed to be also applicable to 𝑊 𝐻 . By using this value, the number of events can be

calculated as follows:

𝑁0-lepton = ℒ × 𝜎 × BR(𝐻 → 𝑏𝑏/𝑐𝑐) × BR(𝑍 → 𝜈𝜈) × 𝜖

𝑁1-lepton = ℒ × 𝜎 × BR(𝐻 → 𝑏𝑏/𝑐𝑐) × BR(𝑊 → ℓ𝜈) × 𝜖

𝑁2-lepton = ℒ × 𝜎 × BR(𝐻 → 𝑏𝑏/𝑐𝑐) × BR(𝑍 → ℓℓ) × 𝜖

where ℓ means 𝑒 or 𝜇, ℒ is the luminosity, 𝜎 is the cross-section and 𝜖 is the efficiency.
Thus, a total of about 411 𝑉 𝐻, 𝐻 → 𝑏 ̄𝑏 events and 20 𝑉 𝐻, 𝐻 → 𝑐 ̄𝑐 events are expected
to be collected in Run 3. In the HL-LHC, a total of about 3,078 𝑉 𝐻, 𝐻 → 𝑏 ̄𝑏 events and
160 𝑉 𝐻, 𝐻 → 𝑐 ̄𝑐 events are expected to be collected. However, to get these values, any
selection except Higgs 𝑝𝑇 is not taken into account, so they are just for the ideal case.

The identification of the boosted Higgs bosons (Xbb tagger) is performed with deep

learning, which is explained in Section 5.2.5. Such a development is done based on

the simulated data but it will be applied to data. So, one of the important tasks to use

the boosted object identification tool is the calibration, that is, the tool is tuned to data

properly. This thesis focuses on the calibration of a new Xbb tagger, GN2X, using

𝑍(→ 𝑏 ̄𝑏)+jet events. boosted 𝑍(→ 𝑏 ̄𝑏) + jets and 𝑍(→ 𝑒𝑒/𝜇𝜇) + jets events. The GN2X

[21] Xbb tagger has been developed for the coming Run 3 analysis including Run 2 data.

The method used is based on the previous study [22] but uses a new Xbb tagger and MC

simulated data for Run 3 analysis with a new ATLAS software release.

1 In Fig 2.2, the expected integrated luminosity is 450 fb−1 at the end of Run 3 but due to an issue with the LHC
accelerator in 2023, data of 70 fb−1 was taken in 2022-2023. So, here we assume 400 fb−1 instead of 450 fb−1.
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Figure 1.6 Normalized Higgs 𝑝𝑇 distribution in a𝑍𝐻 MC sample at√𝑠 = 13 TeV and𝑚(𝐻) =
125 GeV.

1.4 Thesis Structure

This thesis introduces the LHC and ATLAS experiment in Chapter 2. Chapter 3

presents the data and MC samples used in this thesis. The objection reconstruction and

the jet labeling used are introduced in Chapter 4. Chapter 5 shows the methodology of the

calibration for the Xbb tagger. Then, the signal and background modeling are discussed

in Chapter 6. The results are presented in Chapter 7. Finally, Chapter 8 concludes this

thesis and gives an outlook for future work.
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Chapter 2 LHC-ATLAS Experiment

The Large Hadron Collider (LHC) [23] is the world’s largest and most powerful par-

ticle accelerator, which is located at the European Organization for Nuclear Research

(CERN) in Geneva, Switzerland. The ATLAS (A Toroidal LHC ApparatuS) detector [24]

is a general-purpose detector at the LHC. In this chapter, the LHC is briefly introduced in

Section 2.1, and the ATLAS detector is described in Section 2.2.

2.1 Large Hadron Collider

The LHC is a circular proton-proton (pp) collider with a ring with a circumference of

27 km buried 100 m underground. It is designed to accelerate two counter-rotating beams

of protons to a center-of-mass energy of 13.6 TeV. The two proton beams are accelerated

in opposite directions in two separate beam pipes, which are kept at ultrahigh vacuum and

are brought into collision at four interaction points (IP), where the detectors are located.

The accelerator complex of the LHC is shown in Figure 2.1.

Figure 2.1 Cern’s accelerator complex [25].
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The luminosity of the LHC is defined by the following equation:

ℒ =
𝑁2

𝑏 𝑛𝑏𝑓rev𝛾𝑟
4𝜋𝜖𝑛𝛽∗ 𝐹 , (2.1)

where 𝑁𝑏 is the number of particles per bunch, 𝑛𝑏 is the number of bunches per beam,

𝑓rev is the revolution frequency, 𝛾𝑟 is the relativistic gamma factor, 𝜖𝑛 is the normalized

transverse beam emittance, 𝛽∗ is the beta function at the collision point, and 𝐹 is the

geometric luminosity reduction factor due to the crossing angle at the interaction point.

The design and performance of the LHC up to 2022 are summarized in Table 2.1.

Table 2.1 Design and performance of the LHC up to 2022 [26][27].

Parameter Design 2015 2016 2017 2018 2022

Energy (TeV) 7.0 6.5 6.5 6.5 6.5 6.8

Number of bunches 2808 2244 2220 2556-1868 2556 2748

Max. stored energy (MJ) 362 280 280 315 312 400

𝛽∗ (cm) 55 80 40 40→30 30→27→25 60

Bunch population, 𝑁𝑏 (1011p) 1.15 1.2 1.25 1.25 1.1 1.4

Normalized Emittance Stable Beams (𝜇m) 3.75 2.6-3.5 1.8-2 1.8-2.2 1.8-2.2 1.8

Peak Luminosity (1034cm−2s−1) 1.0 <0.6 1.5 2.0 2.1 1.9

The primary goal of the LHC is to search for the Higgs boson and new physics beyond

the Standard Model (SM). The Higgs boson was discovered by the ATLAS and CMS

experiments in 2012 [2-3].

The energy collision at 7 TeV started in 2010 (Run 1). After two years of operation,

the collision energy was increased to 8 TeV in 2012 (Run 1). The LHC was shut down

for two years for maintenance and upgrade. Run 2 started in 2015 and the beam energy

of the LHC was increased to 6.5 TeV, which corresponds to a center-of-mass energy of

13 TeV. After Run 2, the LHC was shut down again for a three-year upgrade and started

Run 3 in 2022 with 13.6 TeV.

In Run 1, the LHC delivered the collision data with a total integrated luminosity of

5.46 fb−1 at 7 TeV and 22.8 fb−1 at 8 TeV [28]. In Run 2, the LHC delivered a total

integrated luminosity of 156 fb−1 at 13 TeV [29]. In Run 3 till 2023, the LHC delivered

70 fb−1 at 13.6 TeV [30].

To achieve such high luminosity, the LHC delivers as high as possible collision rates.

As a direct consequence, an effect called pile-up which means multiple proton-proton

interactions occur in the same or nearby bunch crossings, pollutes the final state of the

collision events.
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2.1.1 HL-LHC and Run 3

The LHC has been continuously upgraded to increase the collision’s energy and lu-

minosity. Figure 2.2 shows the operation and upgrade plan of the LHC. After Run 3,

the LHC will enter into three years of the long shutdown 3 (LS3) for the installation of

new upgrades for the High Luminosity phase of LHC (HL-LHC). The HL-LHC runs are

planned to start from 2029 with a luminosity of 5 to 7.5 times the design one.

5 to 7.5 x nominal Lumi

13 TeV

integrated 
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi
75% nominal Lumi

cryolimit
interaction
regions

inner triplet 
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
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Diodes Consolidation
LIU Installation
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experiment 
beam pipes

splice consolidation
button collimators

R2E project

13.6 TeV 13.6 - 14 TeV
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LS1 EYETS EYETS LS3

ATLAS - CMS
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HL-LHC 
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LS2
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4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Figure 2.2 LHC/HL-LHC upgrade plan [31].

2.2 ATLAS Detector

The ATLAS experiment at the LHC features a multi-purpose particle detector char-

acterized by a forward-backward symmetric cylindrical design with comprehensive cov-

erage nearing 4𝜋 in solid angle. The detector comprises an inner tracking detector

(ID) enveloped by a slender superconducting solenoid, alongside electromagnetic and

hadronic calorimeters, a muon spectrometer (MS), and a trigger and data acquisition sys-

tem (TDAQ). Notably, the ATLAS detector spans a length of 44 meters, boasts a diameter

of 25 meters, and impressively weighs 7000 tons. The schematic view of the ATLAS de-

tector is shown in Figure 2.3.

The nominal interaction point (IP) is located at the center of the detector, defining the

origin of the ATLAS coordinate system right-handed. The 𝑥-axis points from the IP to

the center of the LHC ring. The 𝑦-axis points upward. The 𝑧-axis is defined by the beam
direction. Therefore the 𝑥-𝑦 plane is the transverse plane. Additionally, on this plane, the
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Figure 2.3 Schematic view of the ATLAS detector and its main components [24].

coordinates 𝜙 and 𝑟 are defined as the azimuthal angle and the radial distance from the

beam axis, respectively.

The pseudorapidity 𝜂 for particles coming from the primary vertex [32] is defined as:

𝜂 = − ln tan(𝜃/2),

where 𝜃 is the polar angle with respect to the 𝑧-axis. Therefore the 𝜂 is zero for particles
traveling along the 𝑥-𝑦 plane, and infinity for particles traveling along the 𝑧-axis.

The rapidity 𝑦 is defined as:

𝑦 = 1
2 ln

𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

,

where 𝐸 is the energy and 𝑝𝑧 is the momentum along the 𝑧-axis. Differences in rapidity
are invariant under Lorentz boosts along the 𝑧-axis and the density of emitted particles
as a function of rapidity 𝑑𝑁

𝑑𝑦 is invariant under longitudinal boosts. For highly relativistic

particles (𝐸, 𝑝 ≫ 𝑚), the rapidity 𝑦 is approximately equal to the pseudorapidity 𝜂.
To help the reconstruction of the collision events, quantities such as transverse mo-

mentum 𝑝𝑇 = 𝑝 sin 𝜃 and transverse energy 𝐸𝑇 = 𝐸 sin 𝜃 are used. Also, to measure the

angular distance of two objects, a quantity Δ𝑅 is used:

Δ𝑅 = √(Δ𝜂)2 + (Δ𝜙)2,

where Δ𝜂 and Δ𝜙 are the differences in pseudorapidity and azimuthal angle, respectively.

As particles pass through, they interact with sub-systems that capture details like their
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trajectory, momentum, and energy as hits and energy deposits (cells). The way particles

interact with these sub-systems differs for each particle, as illustrated in Figure 2.4. This

interaction influences the materials employed in the sub-detectors and guides the methods

for particle reconstruction and identification in ATLAS.

Figure 2.4 Schematic view of the interaction of different particles with the ATLAS detector [33].

In this section, the ID, calorimeters, MS and TDAQ are briefly introduced in Section

2.2.1, 2.2.2, 2.2.3 and 2.2.4, respectively.

2.2.1 Inner Detector

The inner tracking detector covers the pseudorapidity range |𝜂| < 2.5 and provides

high-precision measurements of the trajectories of charged particles in the magnetic field.

The ID is immersed in a 2 T axial magnetic field provided by a thin superconducting

solenoid and contained in the cylindrical envelope of length 3.5 m and diameter 1.15 m.

It consists of three sub-detectors: the pixel detector, the semiconductor tracker (SCT),

and the transition radiation tracker (TRT). The overview of the ID is shown in Figure 2.5.

As shown in Figure 2.6, the innermost component is the pixel detector, followed by the

SCT and the TRT. The pixel detector and the SCT cover the range |𝜂| < 2.5, while the
TRT covers the range |𝜂| < 2.0.
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Figure 2.5 Schematic overview of the Inner Detector [34].

Figure 2.6 3D vision of the barrel of the Inner Detector [35].
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Pixel Detector The innermost detector in ATLAS is the pixel detector, tasked with pre-

cisely measuring the trajectories of charged particles. Its role extends beyond track re-

construction, encompassing the measurement of track impact parameters relative to the

primary vertex. The barrel region features 4 layers, and each end-cap region has 3 disks,

resulting in a total of 80.4 million channels. The pixel’s innermost layer, known as the

b-layer, plays a crucial role in secondary vertex measurement.

Semiconductor Tracker The SCT is positioned following the pixel detector and con-

sists of 4 concentric cylindrical layers of silicon microstrip detectors in the barrel region

surrounding the beam axis. The end-cap region is equipped with 9 disks, each containing

up to 3 rings of modules. Each SCT layer is constructed with 2 microstrips to capture hit

space points, with one strip aligned parallel to the beam axis and the other rotated at a

stereo angle of 40 mrad.

Transition Radiation Tracker The TRT is a tool designed for electron identification

through the measurement of transition radiation. It consists of straws, each having a 4

mm diameter tube filled with a gas mixture (70% Ar, 27% CO2, and 3% O2 in Run 2). As

charged particles pass through, they ionize the gas within the straw, causing free electrons

to drift towards a centrally located gold-tungsten wire with a diameter of 31 𝜇m. The wire
is maintained at a potential of −1500 V.

2.2.2 Calorimeters

The ATLAS detector utilizes sampling calorimeters with complete 𝜙 coverage. The

overall structure of the ATLAS calorimeter system is depicted in Figure 2.7. Electromag-

netic (EM) energy measurements, characterized by high granularity, are obtained through

lead/liquid-argon (LAr) sampling calorimeters. Hadronic energy measurements in the

central pseudorapidity range (|𝜂| < 1.7) are provided by a steel/scintillator-tile hadronic
calorimeter known as TileCal. LAr calorimeters are employed in the endcap and forward

regions to measure both electromagnetic and hadronic energies up to |𝜂| = 4.9.

LArElectromagnetic Calorimeter The EM calorimeter canmeasure electron and pho-

ton energy and a part of jet energy. It uses liquid argon (LAr) as the active material and

lead as the absorber. The liquid argon is chosen because of its radiation hardness and

linearity of the response. The lead absorber induces electromagnetic showers when an

15



Chapter 2 LHC-ATLAS Experiment

Figure 2.7 Longitudinal view of the ATLAS calorimeter system [36].

electron or a photon passes through it. The shower and the ionized particles are detected

by the LAr cells and then used for the energy measurement.

The calorimeter is divided into three parts: the barrel (EMB), the end-cap (EMEC)

and the forward (EMFCAL) regions. EMFCAL is described in the next paragraph of the

hadronic calorimeter. The barrel region cover the pseudorapidity range 0 < |𝜂| < 1.475,
while the end-cap region covers the range 1.375 < |𝜂| < 3.2. The LAr calorimeter has a
four-layer structure (layers 0, 1, 2, 3), and an accordion geometry is used for the absorbers

and the electrodes. Figure 2.8 shows the three-layer structure (layers 1, 2, 3) of the LAr

calorimeter and the accordion geometry.

The front layer (layer 1) is highly granular of 𝜂 to measure the start of the showers

and to distinguish between single isolated photons and 2 photons from 𝜋0 decays. The

middle layer (layer 2) collects the majority of the shower energy. The back layer (layer 3)

is used to contain the showers and measure the energy leakage beyond the middle layer.

Additionally, the resampler (layer 0) is used to provide a measurement of the energy lost

in front of the EM calorimeter in the range of 0 < |𝜂| < 1.8. The resolution of the EM
calorimeter is parameterized as:

𝜎(𝐸)
𝐸 = 𝑎

√𝐸[GeV]
⊕ 𝑏

𝐸[GeV] ⊕ 𝑐, (2.2)

where 𝑎 is for the stochastic behavior of the shower development, 𝑏 accounts for the elec-
tronic noise and pile-up, and 𝑐 quantifies the non-uniformity of the calorimeter response,
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Figure 2.8 Accordion structure and the granularity of the different layers of the calorimeter [37].

aging and the radiation damage. The pile-up noise means energy deposits from other

proton-proton collisions in the same or nearby bunch crossings. The intrinsic sampling

term 𝑎 is typically about 10% √GeV [38], the noise term 𝑏 is 10 MeV to 600 MeV with-

out pile-up contribution [39] and is expected to be 30 MeV to 3 GeV in Run 3 pile-up

conditions [40], and the constant term 𝑐 is 1% to 2% [41].

Hadronic Calorimeter The hadronic calorimeter is designed to measure the energy

of hadrons, which consists of the tile calorimeter (TileCal), the LAr hadronic end-cap

calorimeter (HEC) and the LAr forward calorimeter (FCal).

Tile Calorimeter The tile calorimeter plays a crucial role in reconstructing the en-

ergy of hadrons and jets, as well asmeasuring themissing transverse energy𝐸miss
𝑇 . It spans

the pseudorapidity range |𝜂| < 1.7. Specifically, the central barrel covers 0 < |𝜂| < 1.0,
while the two extended barrels span 1 < |𝜂| < 1.7. To address the transition region,

special modules composed of steel scintillator sandwiches are employed. The structure

of the tile calorimeter is illustrated in Figure 2.9, where each barrel is subdivided into 64

modules. The steel grid establishes a 1.5 mm modular gap at the inner radius, serving
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both as the volume for readout electronics and as the flux return for the solenoid field.

Figure 2.9 Geometry of the tile calorimeter module [24].

Hadronic End-cap Calorimeter The HEC, which is a sampling calorimeter, em-

ploys LAr as the active material and flat-plate-designed copper as the absorber integrated

with the end-cap cryostat, it spans the pseudorapidity range of 1.5 < |𝜂| < 3.2. Com-
prising two wheels per end-cap, each wheel is made up of 32 identical wedge-shaped

modules. Figure 2.10 illustrates the HEC’s structure, with the front wheel containing 24

copper plates and the back wheel featuring 16 copper plates.

Forward Calorimeter The end-cap cryostat incorporates the Forward Calorimeter

(FCal), covering the pseudorapidity range of 3.2 < |𝜂| < 4.9. This positioning exposes
the FCal to high fluxes, necessitating a design with LAr gaps to prevent ion build-up

issues and ensure maximum density. The FCal consists of three modules, illustrated in

Figure 2.11. One module employs copper as the absorber to enhance resolution and heat
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Figure 2.10 Geometry of the HEC module [24].

removal for electromagnetic measurements. The remaining two modules use tungsten as

the absorber, focusing on containing hadronic showers and minimizing their spread. This

configuration allows the FCal to deliver accurate measurements of forward jets while

concurrently reducing background interference in the muon spectrometer.

Figure 2.11 Geometry of the FCal modules located in the end-cap cryostat [24].
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2.2.3 Muon Spectrometer

The muon spectrometer aims to deliver accurate standalone measurements of muons

up to 3 TeV within the |𝜂| < 2.7 range. Positioned as the outermost component of the

ATLAS detector, it encases the calorimeters. The capacity to reconstruct high-momentum

muons, even in the absence of ID information, facilitates rapid muon triggering in the

|𝜂| < 2.4 region.
Figure 2.12 shows the arrangement of the muon spectrometer, consisting of three

large superconducting air-core toroidal magnets, each with eight coils. The field integral

of the toroids ranges from 2.0 to 6.0 Tm across the muon detectors. For precise tracking,

the muon spectrometer incorporates Monitored Drift Tube Chambers (MDT) and Cathode

Strip Chambers (CSC). The system also includes fast detectors for triggering purposes:

Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) within the |𝜂| < 2.4
range. This system ensures a Bunch-Crossing Identification (BCID) efficiency exceed-

ing 99%, well-defined 𝑝𝑇 thresholds, and the measurement of the unbending direction of

muon tracks.

Figure 2.12 Cut-away view of the ATLAS muon spectrometer [24].
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Monitored Drift Tubes The barrel MDTs cover the range |𝜂| < 1.05, as well as the
end-cap MDTs cover the range 1.05 < |𝜂| < 2.7. Their size increases with the distance
from the interaction point. They are arranged in three to eight layers of drift tubes, filled

with a gas mixture of 93% Ar and 7% CO2. The average resolution for a single tube is 80

𝜇m and for a chamber is 35 𝜇m.

Cathode Strip Chambers The CSC is used in the forward region of the muon spec-

trometer, covering the range 2.0 < |𝜂| < 2.7, to improve the resolution under the high
hit rate near the beam pipe. Similar to end-cap MDTs, the CSCs are arranged in 8 large

sectors and 8 small sectors. Trigger time for the CSC is less than 30 ns and the average

resolution is 60 𝜇m.

Resistive Plate Chambers In the muon spectrometer’s barrel region, RPCs are em-

ployed to cover the range |𝜂| < 1.05. These RPCs consist of parallel resistive plates and
a 2 𝜇m gas-filled gap. The RPC’s time resolution is approximately 1.5 nm, while the

position resolution is around 1 cm.

Thin Gap Chambers The TGCs are used in the end-cap region of the muon spectrom-

eter, covering the range 1.05 < |𝜂| < 2.4. The time resolution of the TGC is about 4 ns

and the position resolution is around 2 to 6 mm.

2.2.4 Trigger and Data Acquisition System

The LHC is designed to produce a staggering 1.6 billion proton-proton collisions

every second in the case of the averaged pile-up value of about 40, generating a combined

data volume of approximately 60 TB/s for the ATLAS system. With protons bunching

up and intersecting every 25 ns, around 40 million collisions occur per second, and each

bunch carries about 1011 protons. Operating at the designed luminosity of 1034 cm−2s−1,

an average of 20 interactions take place per bunch crossing. Due to this high rate, a

sophisticated trigger system selectively captures only a small fraction of the collisions.

The ATLAS trigger system carries out the selection process in two stages. The first

stage is the hardware-based Level-1 (L1) trigger, which reduces the event rate from the

nominal 40 MHz bunch crossing rate to a maximum recording rate of 100 kHz. The

second stage is the software-based High-Level Trigger (HLT), which further reduces the

event rate to a few hundred Hz for permanent storage and offline analysis.
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Level-1 Trigger The L1 trigger functions as a hardware-based system, utilizing infor-

mation from the calorimeters and muon spectrometer at reduced granularity. Capable of

processing a maximum input rate of 40 MHz, it efficiently identifies noteworthy events

within a time frame of less than 2.5 𝜇s from the collision. Subsequently, the triggered

objects’ geometric locations are transmitted to the next tier of the trigger system in the

form of Regions of Interest (RoI) at an event rate of 100 kHz.

High-Level Trigger The HLT is a software-based system. Its operation relies primarily

on commercially available computing resources and networking infrastructure. With the

utilization of the complete detector granularity of the RoI supplied by the L1 trigger, the

HLT is capable of managing input rates ranging from 75 to 100 kHz.
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Chapter 3 Data and Monte Carlo Samples

3.1 Collision Data

The analysis targets the dataset gathered in ATLAS during Run 2 (2015-2018), which

corresponds to luminosities of 36.4 fb−1, 44.6 fb−1, 58.8 fb−1 for triggers used in the

2015+2016, 2017 and 2018 data-taking periods, respectively [42]. The total luminosity

is 140 fb−1, which is obtained by applying detector operation quality requirements etc. to

the recorded data as shown in Figure 3.1.

Figure 3.1 Cumulative luminosity versus time delivered to ATLAS (green) and recorded by
ATLAS (yellow) during stable beams for pp collisions at 13 TeV centre-of-mass energy in LHC
Run 2 [29].

3.2 Monte Carlo Samples

All simulated events were run through the full detector simulation [43] using Geant4

[44]. The effects of pile-up from multiple proton-proton interactions in the same and

nearby bunch crossings are modeled by overlaying minimum bias events, simulated using

the soft QCD processed of Pythia 8.186 [45] with the A3 tune [46] and the NNPDF2.3LO

[47] parton distribution function (PDF) set. The average number of interactions per cross-

ing obtained from data is used for the pile-up effect simulation. For all simulated event
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samples, except for those generated using Sherpa [48], the EvtGen 1.6.0 program [49]

is used to describe the decays of bottom and charm hadrons. The simulated events are

processed through the same reconstruction algorithms as the data.

𝑍(→ 𝑏 ̄𝑏) + jets, 𝑍(→ 𝑞 ̄𝑞) + jets (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐) and 𝑊 (→ 𝑞 ̄𝑞) + jets processes are

simulated with the Sherpa 2.2.8 [50] generator using matrix elements with next-to-leading

order (NLO) accuracy for one additional parton, and matrix elements accurate to leading

order (LO) for up to four partons calculated with the Comix and OpenLoops libraries.

They are matched with Sherpa PS [51] using the MEPS@NLO prescription and the set of

tuned parameters developed by Sherpa authors. The NNPDF3.0NNLO set of PDFs [52]

is used and the samples are normalized to an NNLO prediction.

The process of the multijet events, which is called multijets or dijets, is generated

using Pythia 8.235 generator, using the A14 PS and hadronization tune and NNPDF2.3LO

PDF set.

The process of 𝑡 ̄𝑡 is simulated with the Powheg Box v2 [53-54] generator to-

gether with the NNPDF3.0NLO [52] PDF set. The simulated events were interfaced to

Pythia8.230 [46] for parton shower (PS) and hadronization using the A14 tune [55-56]

together with the NNPDF2.3LO PDF set. The top-quark mass was set to 172.5 GeV and

the ℎ𝑑𝑎𝑚𝑝 parameter, which controls the transverse momentum (𝑝𝑇 ) of the first additional

emission beyond the Born configuration, was set to 1.5 times the top-quark mass. The 𝑡 ̄𝑡
production cross-section is corrected to the theory prediction calculated at next-to-next-

to-leading (NNLO) order and next-to-next-to-leading log approximation. The produc-

tion of 𝑡 ̄𝑡 + 𝑊 /𝑍 is simulated with the aMC@NLO 2.3.3 [57] and Pythia8.210 using

NNPDF2.3NLO PDF set.

Diboson (𝑊 𝑊 , 𝑊 𝑍 and 𝑍𝑍) processes were simulated with Sherpa 2.2.1, inter-

faced with the NNPDF3.0NNLO PDF sets for both the matrix element calculation and

the PS. Sherpa provides a combination of different matrix elements with different parton

multiplicities: processes with zero or one additional partons are calculated at NLO in the

matrix element, while two or three additional partons are included at LO in QCD.

The 𝑍 → ℓℓ (ℓ = 𝑒, 𝜇) events are generated using Sherpa 2.2.8 and with exactly
the same setup as for the hadronically decaying 𝑍 events. 𝑍 → ℓℓ events have been

generated with MadGraph using multileg leading order approach up to 4 additional parton

in the matrix element with the ckkw merging approach. Pythia 8.230 has been used in the

parton shower.
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Chapter 4 Object Reconstruction and Jet Labeling

4.1 Jets

4.1.1 Large-𝑅 Jets

A boosted object originating from 𝐻 → 𝑏 ̄𝑏/𝑐 ̄𝑐, 𝑍 → 𝑏 ̄𝑏/𝑐 ̄𝑐, 𝑊 → 𝑞 ̄𝑞, etc. are re-
constructed as a single object, which is called large-𝑅 jet. In this analysis, the inputs to

the large-𝑅 jet reconstruction algorithm are Unified Flow Objects (UFOs) [58]. UFOs

are obtained from merging Particle-Flow Objects (PFOs) [59] and Track-Calo Clusters

(TCCs) [60]. They have neutral and charged components. The PFO and TCC are con-

structed from both calorimeter clusters and tracks but their algorithms are different. The

former is a typical method of so-called particle-flow, that is, cells or clusters matched to

charged tracks are considered as charged components and the remaining as neutral. On

the other hand, the latter is an algorithm specialized for high 𝑝𝑇 objects, that is, the di-

rection is obtained from a charged track and the energy from a cluster. The large-𝑅 jets

are built using the anti-𝑘𝑇 algorithm [61] with radius parameter 𝑅 = 1.0 implemented in
FastJet [62]. Pile-up and underlying event contributions are removed via grooming with

the Soft-Drop algorithm [58] along with Constituent Subtraction [63] and SoftKiller [64].

4.1.2 Track Jets

Smaller radius jets (subjets) are used to investigate the constitute of the large-𝑅 jets for

the identification of heavy flavor hadrons. In this study, the variable-radius (VR) track jets

are used as subjets. Charged tracks reconstructed from the inner detector are used to form

subjets using the anti-𝑘𝑇 algorithm. For VR subjets, the radius parameter 𝑅 is defined

as a function of the jet 𝑝𝑇 and a constant parameter 𝜌 = 30 GeV, scaling as 𝑅 = 𝜌/𝑝𝑇 .

Minimum and maximum values for the radius parameter are kept as 𝑅𝑚𝑖𝑛 = 0.02 and

𝑅𝑚𝑎𝑥 = 0.4. The VR subjets are ghost-associated [65] to the large-𝑅 jet and are required

to have 𝑝𝑇 > 7 GeV.

4.2 Tracks

The reconstructed trajectories of charged particles, known as tracks, are reconstructed

by utilizing hits that these particles create while passing through the inner detector. The
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precise reconstruction of tracks is a critical task because they play a crucial role in recon-

structing various other objects such as vertices and jets. The process of track reconstruc-

tion in the Inner Detector involves employing a series of algorithms, as detailed in Ref.

[66-67].

Tracks are described using a perigee representation, employing five parameters and

a reference point, as shown by Figure 4.1. The reference point utilized corresponds to the

average position of the proton-proton interactions (beamspot position). The five parame-

ters are outlined below:

• The transverse impact parameter 𝑑0, representing the projection of the point of clos-

est approach in the transverse direction.

• The longitudinal impact parameter 𝑧0 sin 𝜃, denoting the projection of the point of
closest approach along the 𝑧-axis direction.

• The inverse transverse momentum 𝑝/𝑝𝑇 , providing information about the curvature

of the particle track.

• The track azimuthal angle 𝜙, indicating the direction of the track in the 𝑟-𝜙 plane

at the point of closest approach; 𝜙 ranges between [−𝜋, 𝜋].
• The track polar angle 𝜃, varying within the range [0, 𝜋].

𝑑0, 𝑧0 sin 𝜃, 𝑝/𝑝𝑇 are primary parameters to evaluate the tracking performance.

Figure 4.1 The perigee representation [68].

Tracks are ghost-associated to the large-𝑅 jet and are required to satisfy the track

selection summarised in Table 4.1.
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Table 4.1 Track selection requirements, where 𝑑0 is the transverse impact parameter (IP) of the
track, 𝑧0 is the longitudinal IP with respect to the primary vertex and 𝜃 is the track polar angle.
Shared hits are hits used in the reconstruction of multiple tracks. A hole is a missing hit, where
one is expected, on a layer between two other hits on a track.

Parameter Selection

𝑝𝑇 > 500 MeV

|𝑑0| < 3.5 mm
|𝑧0 sin 𝜃| < 5.0 mm
Silicon hits ≥ 8
Shared silicon hits < 2
Silicon holes < 3
Pixel holes < 2

4.3 Primary Vertex

The process of reconstructing interaction vertices involves utilizing a set of recon-

structed tracks. Tracks may originate either from a primary vertex (PV), which is the

interaction point between two partons, or from a secondary vertex (SV) resulting from

particle decays, photon conversions, or hadronic interactions.

Generally, the reconstruction of the PV occurs through three sequential steps. Ini-

tially, a seed position is determined based on the beam spot in the transverse plane. Sub-

sequently, the selected tracks and seeds are fitted to establish the best-estimated vertex

position. Once the vertex position is defined, tracks incompatible with the vertex are

eliminated. The discarded tracks are then employed to initiate a new PV, and this process

is reiterated until there are no unassociated tracks remaining or no additional vertices can

be identified. It is a requirement for PVs to be associated with a minimum of two tracks.

Additionally, a single track may be linked to multiple vertices. The PV exhibiting the

highest sum of squared transverse momenta for its associated tracks is designated as the

hard-scatter PV, and the remaining PVs are categorized as interaction vertexes from the

pile-up.

4.4 Muons

Muon tracks are reconstructed independently in the inner detector and the muon spec-

trometer. They are required to have a minimum number of hits in each system, and must

be compatible in terms of geometrical and momentum matching. Finally, the information

from both the inner detector and muon spectrometer systems is used in a combined fit to
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refine the muon momentum measurement. In this analysis, muons are required to pass

”medium” identification and ”tight” track-based isolation criteria. Muons are required to

have a transverse momentum above 20 GeV and |𝜂| < 2.5. The muon reconstruction
efficiency and the muon momentum scale and resolution corrections are measured in data

and applied to the simulated events.

4.5 Electrons

Electrons are reconstructed from energy deposits in the calorimeter matched to inner

detector tracks. In order to select and identify electrons, requirements are imposed on the

track properties and quality, the shape of the clusters of calorimeter energy deposits and the

track-to-cluster match. In this analysis, the identification is performed using a likelihood

technique and is required to pass a ”medium”working point. Electrons are further required

to be isolated by imposing the ”tight” isolation working point requirement. This isolation

requires the absence of nearby tracks within a 𝑝𝑇 -dependent variable-size cone around

the electron. The electron energy scale is calibrated in data, and the energy resolution is

calibrated in MC, using 𝑍 → 𝑒+𝑒− events. Electrons are required to have a transverse

momentum above 20 GeV and |𝜂| < 2.5, excluding the crack region (1.37 < |𝜂| < 1.52).
The significance of the transverse impact parameter, |𝑑0|/𝜎(𝑑0), is required to be less than
5.0. The quantity |𝑧0 sin 𝜃| is required to be less than 0.5 mm, where 𝑧0 is the longitudinal

impact parameter, to ensure that electrons are consistent with having been produced at the

primary vertex.

4.6 Overlap Removal

The following overlap removal procedure is applied to resolve ambiguities in which

multiple electrons, muons or jets are reconstructed from the same detector signature.

First, any electrons that share a track are removed. Second, if an electron and a muon

share a track, the electron is rejected if the muon is associated with a signature in the

muon spectrometer, otherwise, the muon is rejected. Third, any jet within Δ𝑅 < 0.2
of an electron is rejected. Fourth, any jets within Δ𝑅 < 0.2 of a muon are rejected

if they have fewer than three associated tracks. Fifth, any electrons or muons within

Δ𝑅 < min(0.4, 0.04 + 10 GeV/𝑝𝑙𝑒𝑝
𝑇 ) of a jet passing the previous requirements are re-

jected. Finally, any large-𝑅 jet found within Δ𝑅 < 1.0 of an electron is rejected.
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4.7 Large-𝑅 Jets Labeling

The large-𝑅 jet truth labeling defines the acceptance of the analysis. Truth matching

is done in two steps: [69]

• First, match a truth particle to truth jets such thatΔ𝑅(truth particle, truth jet)< 0.75,
and get the truth label of the truth jets

• Further match a reconstructed VR jet to a truth jet such that Δ𝑅(truth jet, reco jet)
< 0.75, and copy the truth label of the matched truth jet to the reco jet

Table 4.2 shows the truth label used in the analysis and its requirements.

Table 4.2 Truth label used in the analysis and its requirements.

Num. Label Requirements

1 tqqb
There are a matched top quark and 𝑊 boson;

there is at least one 𝐵-hadron;
the truth jet mass is larger than 140 GeV.

2 Wqq
There is at least one 𝑐 or 𝑢-quark in the first 2 leading partons;

and their invariant mass is in the 60-140 GeV range;
the truth jet mass is in the 50-100 GeV range.

3 Zbb
There’re at least 2 ghosted associated 𝑏-hadrons;

and their invariant mass is in the 50-140 GeV range;
the truth jet mass is in the 50-110 GeV range.

4 Zcc
There’re at least 2 ghosted associated 𝑐-hadrons;

and their invariant mass is in the 50-140 GeV range;
the truth jet mass is in the 50-110 GeV range.

5 Zqq
The first 2 leading partons are with opposite charge;
and their invariant mass is in the 50-140 GeV range;

the truth jet mass is in the 50-110 GeV range.

6 Wqq from top
There are a matched top quark and 𝑊 -boson;

there is no 𝑏-hadron;
the truth jet mass is in the 50-100 GeV range.

7 other from top There is only a matched top quark.

8 other from V
There is at least one 𝑐 or 𝑢-quark in the first 2 leading partons

OR the first 2 leading partons have opposite charge;
their invariant mass is required in the 60-140 GeV range.

9 no truth There is no matched truth jet.

10 QCD The truth jets are not matched to any heavy particles.

As explained in Section 3.2, There are MC samples of 𝑍(→ 𝑏 ̄𝑏) + jets, 𝑍(→ 𝑞 ̄𝑞) +
jets (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 + jets and 𝑡 ̄𝑡 etc. in this analysis. In the MC events, there are

different types of large-R jets in one specific process, for example, even in𝑍(→ 𝑏 ̄𝑏)+jets,
there are large-𝑅 jets of Zbb, Zqq or even QCD. So, the following templates (a set of large-

𝑅 jets) are prepared using the following truth-matching requirement. The details fraction

of each truth label in each sample is shown in Table 4.3.
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• 𝑍 → 𝑏 ̄𝑏 template: It is created from the 𝑍(→ 𝑏 ̄𝑏) + jets sample. The large-𝑅 jets

are required to be labeled as Zbb.

• 𝑍(→ 𝑞 ̄𝑞) + jets (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐) template: It is created from the 𝑍(→ 𝑞 ̄𝑞) + jets

sample. The large-𝑅 jets are required to be labeled as Zqq or Zcc.

• 𝑊 → 𝑞 ̄𝑞 template: It is created from the 𝑊 (→ 𝑞 ̄𝑞) + jets sample. The large-𝑅 jets

are required to be labeled as Wqq or Other from V.

• 𝑡 ̄𝑡 template: It is created from the 𝑡 ̄𝑡 sample. The large-𝑅 jets are required to be

labeled as tqqb, Wqq from top or other from top.

• dijet template: It is created from the dijet sample. The large-𝑅 jets are required to

be labeled as QCD.

Table 4.3 The fraction of each truth label of the leading large-𝑅 jet in 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞 (𝑞 =
𝑢, 𝑑, 𝑠, 𝑐), 𝑊 → 𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 samples.

Leading large-𝑅 jets fraction Sub-leading large-𝑅 jets fraction

Truth labels 𝑍 → 𝑏 ̄𝑏 𝑍 → 𝑞 ̄𝑞 𝑊 → 𝑞 ̄𝑞 𝑡 ̄𝑡 dijet 𝑍 → 𝑏 ̄𝑏 𝑍 → 𝑞 ̄𝑞 𝑊 → 𝑞 ̄𝑞 𝑡 ̄𝑡 dijet

tqqb 0 0 0 0.62 0 0 0 0 0.53 0

Wqq 0 0 0.56 <0.01 0 0 0 0.34 <0.01 0

Zbb 0.48 <0.01 0 0 0 0.39 <0.01 0 0 0

Zcc <0.01 0.12 0 0 0 <0.01 0.08 0 0 0

Zqq 0.03 0.45 0 0 0 0.02 0.26 0 0 0

Wqq from top 0 0 0 0.07 0 0 0 0 0.08 0

other from top 0 0 0 0.11 0 0 0 0 0.15 0

other from V <0.01 <0.01 0.01 <0.01 0 <0.01 0.02 0.03 <0.01 0

no truth 0 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

QCD 0.49 0.42 0.43 0.2 1 0.58 0.64 0.63 0.23 1
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Chapter 5 Calibration Strategy

This section introduces methods to calibrate GN2X tagger signal efficiency using

𝑍(→ 𝑏 ̄𝑏)+jets events at high𝑍-boson transverse momenta, discusses relevant systematic

uncertainties and presents the results of the calibration. This calibration method has been

developed based on Ref. [22], but the analysis in this thesis is based on a new Xbb tagger

and uses a new version of ATLAS software release (version 22), which will be used for

Run 3 and reprocessed Run 2 data.

5.1 Methodology

The efficiency of the GN2X tagger to select 𝑍 → 𝑏 ̄𝑏 signal events in data (𝜖data) is
defined as the number of data events 1 which pass the GN2X tagger requirement (𝑁data

passed)

divided by the total number of signal events in data (𝑁data
total). Due to imperfect modeling of

the MC simulation process, this can be different from the efficiency in simulation (𝜖MC):

𝜖data = 𝑁data
passed/𝑁

data
total, 𝜖MC = 𝑁MC

passed/𝑁
MC
total. (5.1)

Thus a data-to-simulation scale factor (SF) needs to be measured (SF = 𝜖data/𝜖MC)

and applied to the MC simulation to correct the difference between data and simulation.

The equation can be rewritten as:

SF = 𝜖data
𝜖MC =

𝑁data
passed/𝑁

data
total

𝑁MC
passed/𝑁

MC
total

=
𝑁data

passed/𝑁
MC
passed

𝑁data
total/𝑁

MC
total

=
𝜇post−tag
𝜇pre−tag

. (5.2)

The values 𝜇post−tag and 𝜇pre−tag are the number of signal events in data divided by the
number of signal events in MC simulation before and after the GN2X tagger requirement,

respectively.

Huge backgroundsmake the 𝜇pre−tagmeasurement using𝑍(→ 𝑏 ̄𝑏)+jets events in data
before the GN2X tagger impossible. Thus, the 𝜇pre−tag is measured using 𝑍(→ ℓ+ℓ−) +
jets , ℓ = 𝑒, 𝜇 process, which exhibits a smaller relative background contribution. The

1 Strictly speaking, the GN2X tagger is applied to each boosted object in an event. So, the number of data events
means ”the number of objects”. However, in this study, there is exactly one object (”the leading large-R jet”) per
event. So, the term ”event” is used.
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number of signal events in data before tagging can be estimated by:

𝑁data
𝑍→𝑏 ̄𝑏 = 𝑁MC

𝑍→𝑏 ̄𝑏 ⋅
𝑁data

𝑍→ℓℓ
𝑁MC

𝑍→ℓℓ
= 𝑁MC

𝑍→𝑏 ̄𝑏 ⋅
𝑁data

ℓℓ − 𝑁MC
bkg,ℓℓ

𝑁MC
𝑍→ℓℓ

, (5.3)

where 𝑁MC
𝑍→𝑏 ̄𝑏 is the number of 𝑍 → 𝑏𝑏̄ signal events in MC simulation before tagging,

𝑁data
ℓℓ is the number of selected events in data,𝑁MC

bkg,ℓℓ is the number of background events

in MC simulation and 𝑁MC
𝑍→ℓ+ℓ− is the number of 𝑍 → ℓ+ℓ− signal events in MC simu-

lation. Thus, the 𝜇pre−tag can be calculated as:

𝜇pre−tag =
𝑁data

ℓℓ − 𝑁MC
bkg,ℓℓ

𝑁MC
𝑍→ℓℓ

, (5.4)

and depends only on the yields of 𝑍 → ℓ+ℓ− channel. The event selections for 𝑍 → 𝑏 ̄𝑏
and 𝑍 → ℓ+ℓ− events are described in Section 5.2 and 5.3, respectively.

The SFs are measured as a function of the 𝑍-boson candidate 𝑝𝑇 . As the large-𝑅
jet 𝑝𝑇 > 450 GeV, in order to have a uniform division of the 𝑝𝑇 range with respect to

available statistics, three leading large-𝑅 jet 𝑝𝑇 bins are defined based on the number

of events observed in the data: 450 < 𝑝𝑇 < 500 GeV, 500 < 𝑝𝑇 < 600 GeV and

600 < 𝑝𝑇 < 1000 GeV.

5.2 Event Selection for the 𝜇post−tag Measurement
5.2.1 Trigger Strategy

Unprescaled single large-𝑅 jet triggers are employed for the trigger strategy. These

triggers are adapted throughout the 4 data-taking periods to accommodate machine con-

ditions, involving to increase in the 𝑝𝑇 threshold and to introduce a jet mass requirement.

This additional requirement on the jet mass allows for a reduction in the cut for the recon-

structed large-𝑅 jet 𝑝𝑇 . The relaxation of the 𝑝𝑇 cut significantly influences the analysis

sensitivity due to the sharply declining 𝑝𝑇 spectrum.

A summary of the triggers utilized, including 99% efficiency points determined

through fitting the Fermi function, is shown in Table 5.1.

5.2.2 Pre-selection

Pre-selection requirements are applied as follows:

• Passing the detector quality criteria (for data only)

– Passing calorimeter operation goodness criteria
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Table 5.1 Overview of the triggers used for the 𝜇post−tag Measurement. They are applied as an
OR and all are required to be active. The offline threshold corresponds to the offline jet cut above
which the triggers are 99% efficient [70].

Year Trigger Offline Threshold [GeV] Luminosity [fb−1]

2015 HLT_j360_a10_lcw_sub_L1J100 𝑝𝑇 ,𝐽 > 410 GeV 3.2

2016 HLT_j420_a10_lcw_L1J100 𝑝𝑇 ,𝐽 > 450 GeV 33.0

2017
HLT_j440_a10t_lcw_jes_L1J100 𝑝𝑇 ,𝐽 > 450 GeV 41.2

HLT_j390_a10t_lcw_jes_30smcINF_L1J100 𝑝𝑇 ,𝐽 > 420 GeV, 𝑚𝐽 > 50 GeV 41.0

2018
HLT_j460_a10t_lcw_jes_L1J100 𝑝𝑇 ,𝐽 > 490 GeV 58.5

HLT_j420_a10t_lcw_jes_30smcINF_L1J100 𝑝𝑇 ,𝐽 > 450 GeV, 𝑚𝐽 > 60 GeV 58.5

HLT_j420_a10t_lcw_jes_30smcINF_L1J100_a10_sub_L1SC111 𝑝𝑇 ,𝐽 > 450 GeV, 𝑚𝐽 > 60 GeV 55.4

– Passing calorimeter noise cleaning criteria

• Passing the triggers as shown in Table 5.1

• Presence of a primary vertex

• At least two large-𝑅 calorimeter jets with 𝑝𝑇 > 200GeV to ensure the dijet topology

• Applied overlap removal on the selected events as shown in Section 4.6

• No isolated electron or muon with 𝑝𝑇 > 25 GeV

5.2.3 𝑝𝑇 Symmetry and Rapidity Cut

In addition to pre-selections, the following event selections are applied to increase

the signal significance and get rid of mismodeling phase space. Two additional cuts are

applied:

• 𝑝𝑇 symmetry cut: 𝑝𝑇 ,1−𝑝𝑇 ,2
𝑝𝑇 ,1+𝑝𝑇 ,2

< 0.15
• Rapidity difference cut: |Δ𝑦1,2| < 1.2

where 𝑝𝑇 ,1 is the transverse momentum of the leading large-𝑅 jet (the jet with the highest

𝑝𝑇 ) and 𝑝𝑇 ,2 is the transverse momentum of the sub-leading large-𝑅 jet (the jet with 2nd

highest 𝑝𝑇 ). Δ𝑦1,2 is the rapidity difference between the leading and sub-leading large-𝑅
jets.

These two selections help to get rid of themismodeling ofmultijet. The distribution of

these two is shown in Figure 5.1 and 5.2. After the pre-selection as shown in Section 5.2.2,

most of the remaining events come from dijets (multijet process). So, data is compared

with the dijet MC samples. For the 𝑝𝑇 symmetry cut, the ratio starts to decrease from

0.15. For the rapidity difference, it is tightened to 1.2 to reject more multijet events.
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Figure 5.1 The 𝑝𝑇 symmetry distribution of the 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 →
𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 samples.

5.2.4 Large-𝑅 Jet Candidates

The candidates for the calibration are selected from leading large-𝑅 jets with mass

range 50 ≤ 𝑚 < 150 GeV and transverse momentum larger than 450 GeV which can

satisfy the trigger condition for all the data-taking periods. The candidates must have at

least two ghost-associated VR track jets with 𝑝𝑇 > 7 GeV.
The fraction of the leading large-𝑅 jets originate from different MC templates is as

shown in Figure 5.3. In the 𝑍(→ 𝑏 ̄𝑏) + jets process, the 𝑍 → 𝑏 ̄𝑏 could be either the

leading large-𝑅 jet or the sub-leading large-𝑅 jet. Since only the leading large-𝑅 jet is

considered as the 𝑍 → 𝑏 ̄𝑏 candidate, about 40% of the signal events which are the sub-

leading large-𝑅 jets are lost. A similar situation happens in other processes, statistics are

lost by only using leading large-𝑅 jets. However, it’s not trivial to add the contribution

of subleading large-𝑅 jets because of the large fraction of the wrong-labeled large-R jets.

This will be one of the improvements in the future.
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Figure 5.2 The rapidity difference distribution of the 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 →
𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 samples.
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Figure 5.3 Truth labels of the leading large-𝑅 jet and the sub-leading large-𝑅 jet in𝑍 → 𝑏 ̄𝑏, 𝑍 →
𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 → 𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 samples.
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5.2.5 𝑋 → 𝑏 ̄𝑏 Tagger GN2X

The 𝑋 → 𝑏 ̄𝑏 double 𝑏-tagger aims to identify the large-𝑅 jets that contain two 𝑏-jets
from the decay of massive particles. GN2X, a new algorithm based on Graph Neural

Networks (GNNs) and transformers, is trained to classify large-𝑅 jets based on their ori-

gin, discriminating jets from boosted Higgs boson decaying into pairs of bottom quarks,

𝐻(𝑏 ̄𝑏)-jets, and charm quarks, 𝐻(𝑐 ̄𝑐)-jets, from those originating from background pro-

cesses.

GN2X benefits from the study of novel advances in flavor tagging of small-radius

jets using GNNs and transformers. A more detailed description of the GN2X algorithm

can be found in Appendix B. Also, we have implemented an alternative Xbb tagger based

on GN2X, incorporating a method called subgraphs, as detailed in Appendix B.2, with

the aim of enhancing the performance of the base GN2X.

GN2X provides four outputs for each large-𝑅 jet, corresponding to the probabilities

of the jet being a 𝐻(𝑏 ̄𝑏)-jet (𝑝Hbb), a 𝐻(𝑐 ̄𝑐)-jet (𝑝Hcc), multijet (𝑝QCD), or a top-quark
(𝑝top) jet. A discriminant, roughly corresponding to a log-likelihood ratio, is constructed

from these four outputs:

𝐷Hbb = ln
𝑝Hbb

𝑓Hcc ⋅ 𝑝Hcc + 𝑓top ⋅ 𝑝top + (1 − 𝑓Hcc − 𝑓top) ⋅ 𝑝QCD
, (5.5)

where 𝑓Hcc and 𝑓top are two free parameters that determine the relative weights of 𝑝Hcc
and 𝑝top respectively to 𝑝QCD, controlling the trade-off among 𝐻(𝑐 ̄𝑐), top and multijet
rejections. For the following studies, the values of 𝑓Hcc and 𝑓top are set to 0.02 and 0.25
[21], respectively, which were obtained after optimization procedure to maximize the re-

jection for a given signal efficiency. The tagging of a large-𝑅 jet as originating from an

𝐻 → 𝑏 ̄𝑏 decay is performed by applying a cut on the discriminant 𝐷Hbb.

Figure 5.4 shows the normalized distribution of the discriminant score for 𝐻(𝑏 ̄𝑏),
𝐻(𝑐 ̄𝑐), top and multijet jets.

The performance of GN2X is evaluated in terms of the signal efficiency and the re-

jection of the background processes. The signal efficiency (𝜖) is defined as the tagging
efficiency of 𝐻(𝑏 ̄𝑏)-jets. The background rejection factors are defined as the inverse of a
background mis-tagging efficiency (1/𝜖) for 𝑡 ̄𝑡 and multijet events.

There are different working points (WPs) for GN2X, which are shown in Table 5.2.

In summary, events used to extract the 𝜇post-tag are selected as follows:
• Pre-selection as described in Section 5.2.2
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Figure 5.4 The discriminant score of 𝐻(𝑏 ̄𝑏) jets in 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 →
𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 templates. The red line shows the cut value for 60% WP.

Table 5.2 GN2X threshold values for all WPs with 𝑓Hcc = 0.02 and 𝑓top = 0.25

.
Working point 50% 60% 70% 80%

Threshold value 4.335 3.818 3.166 2.211
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• The leading large-𝑅 jet is required to have 𝑝𝑇 > 450 GeV
• At least two ghost-associated VR track jets with 𝑝𝑇 > 7 GeV
• The jet mass of leading-𝑝𝑇 large-𝑅 jet is required to be above 50 GeV

• Additional requirements are applied to the large-𝑅 jets to suppress themis-modeling

of multijets and to reject backgrounds as shown in Section 5.2.3

• The leading large-𝑅 jet is required to pass the 𝑋 → 𝑏 ̄𝑏 tagger
A schematic diagram of the𝑍 → 𝑏 ̄𝑏 event selection is also shown in Figure 5.5. After each
selection and the GN2X taggingmentioned above, the number of events for𝑍 → 𝑏 ̄𝑏, 𝑍 →
𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 → 𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡 templates with mass range 50 ≤ 𝑚 < 150 GeV

is shown in Table 5.3.

Figure 5.5 Schematic diagram of the 𝑍 → 𝑏 ̄𝑏 event selection.

Table 5.3 The number of events for 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝑊 → 𝑞 ̄𝑞, dijets and 𝑡 ̄𝑡
templates with mass range 50 ≤ 𝑚 < 150 GeV from Run 2 MC simulation (normalized to 140
fb−1) after each selection.

Selection
Number of events

𝑍 → 𝑏 ̄𝑏 𝑍 → 𝑞 ̄𝑞 𝑊 → 𝑞 ̄𝑞 𝑡 ̄𝑡 dijets

Pre-selections 52445 258324 803963 422781 254586038

𝑝𝑇 symmetry < 0.15 41918 205807 642392 322625 188926756

|Δ𝑦1,2| < 1.2 31790 155751 480084 230729 119146981

Large-𝑅 jet candidates 7534 37534 115143 40312 26357350

GN2X tagger 80% WP 5957 345.8 514.3 1661 262739

GN2X tagger 70% WP 5194 141.2 76.46 715.7 145703

GN2X tagger 60% WP 4416 53.52 71.16 356.0 89019

GN2X tagger 50% WP 3712 16.40 35.37 195.1 56380
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5.3 Event Selection for the 𝜇pre−tag Measurement
As discussed in Section 5.1, we use 𝑍(→ ℓ+ℓ−) + jets instead of 𝑍(→ 𝑏 ̄𝑏) + jets to

calculate 𝜇pre-tag. At least one additional high 𝑝𝑇 jet is required in order to ensure a similar

event topology as the 𝑍(→ 𝑏 ̄𝑏) + jets case. For the other selections, the 𝑝𝑇 symmetry and

rapidity difference cuts are similar to the simuation of 𝑍(→ 𝑏 ̄𝑏) + jets. The selection is

summarized as follows:

• Passing the detector quality criteria (for data only)

– Passing calorimeter operation goodness criteria

– Passing calorimeter noise cleaning criteria

• Passing the triggers as shown in Table 5.4 and 5.5

• Presence of a primary vertex

• Applied overlap removal on the selected events as shown in Section 4.6

• At least two leptons of the same flavor

• At least one large-𝑅 jet with 𝑝𝑇 > 200 GeV and |𝜂| < 2.0
• For 𝑍 → 𝜇𝜇, at least one of the selected muons has 𝑝𝑇 > 27 GeV and opposite

charge

• For 𝑍 → 𝑒𝑒, at least one of the selected electrons has 𝑝𝑇 > 25 GeV
• The lepton 𝑝𝑇 balance is required: (𝑝ℓ1

𝑇 − 𝑝ℓ2
𝑇 ) /𝑝ℓℓ

𝑇 < 0.8
• In analogy to the 𝜇post−tag measurement, additional requirements are applied as fol-
lows:

– 𝑝ℓℓ
𝑇 is required to be above 450 GeV and larger than the leading large-𝑅 jet

𝑝𝑇 : 𝑝ℓℓ
𝑇 > 𝑝lead.jet

𝑇

– 𝑝𝑇 symmetry requirement: 𝑝ℓℓ
𝑇 −𝑝lead.jet

𝑇
𝑝ℓℓ

𝑇 +𝑝lead.jet
𝑇

< 0.15
– rapidity difference: |Δ𝑦ℓℓ−lead.jet| < 1.2

• The signal region is defined by a mass window requirement of 66 < 𝑚𝑍→ℓ+ℓ− <
116 GeV

A schematic diagram of the 𝑍 → 𝑏 ̄𝑏 event selection is also shown in Figure 5.6.

Table 5.4 Overview of single muon triggers used for the 𝜇pre−tag Measurement. They are applied
as an OR and all are required to be active.

Year Trigger Offline Threshold [GeV]

2015 HLT_mu20_iloose_L1MU15 𝑝𝑇 ,ℓ > 20 GeV
2015-2018 HLT_mu50 𝑝𝑇 ,ℓ > 50 GeV
2016-2018 HLT_mu26_ivarmedium 𝑝𝑇 ,ℓ > 26 GeV
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Figure 5.6 Schematic diagram of the 𝑍 → ℓℓ event selection.

Table 5.5 Overview of single electron triggers used for the 𝜇pre−tag Measurement. They are
applied as an OR and all are required to be active.

Year Trigger Offline Threshold [GeV]

2015
HLT_e24_lhmedium_L1EM20VH 𝑝𝑇 ,ℓ > 24 GeV

HLT_e60_lhmedium 𝑝𝑇 ,ℓ > 60 GeV
HLT_e120_lhloose 𝑝𝑇 ,ℓ > 120 GeV

2016-2018
HLT_e26_lhtight_nod0_ivarloose 𝑝𝑇 ,ℓ > 26 GeV

HLT_e60_lhmedium_nod0 𝑝𝑇 ,ℓ > 40 GeV
HLT_e120_lhloose_nod0 𝑝𝑇 ,ℓ > 140 GeV

40



Chapter 6 Signal and Background Modeling

Chapter 6 Signal and Background Modeling

6.1 Modeling for the 𝜇post-tag Measurement
6.1.1 Comparison of Data and Simulation

The yields before and after the tagger are shown in Table 6.1 and 6.2. For 450 ≤
𝑝𝑇 < 500GeV, 500 ≤ 𝑝𝑇 < 600GeV and 600 ≤ 𝑝𝑇 < 1000GeV 𝑝𝑇 bins, the comparison

plots for the large-𝑅 jet kinematics before the 𝑋 → 𝑏 ̄𝑏 tagging are shown in Figure 6.1,
and after the 𝑋 → 𝑏 ̄𝑏 tagging, for 60% working point, are shown in Figure 6.2. Similarly,

the comparison plots for other working points are shown in Appendix A.1. Before the

𝑋 → 𝑏 ̄𝑏 tagging, for all the 𝑝𝑇 bins, the data/MC ratio is seen to be smaller than 1 because

the cross-section of dijets is overestimated. After the 𝑋 → 𝑏 ̄𝑏 tagging, the data/MC ratio

is slightly larger than 1 and almost flat with a small positive slope.

Table 6.1 Event yields for different Run 2 MC samples (normalized to 140 fb−1) before 𝑋 → 𝑏 ̄𝑏
tagger in different 𝑝𝑇 bins in large-𝑅 jet mass range 50 ≤ 𝑚 < 150 GeV. Statistical uncertainties
of MC samples are shown.

MC Sample 450 ≤ 𝑝𝑇 < 500 GeV 500 ≤ 𝑝𝑇 < 600 GeV 600 ≤ 𝑝𝑇 < 1000 GeV
𝑍 → 𝑏 ̄𝑏 9770 ± 51 4660 ± 33 2860 ± 23
𝑍 → 𝑞 ̄𝑞 42260 ± 370 20030 ± 240 12430 ± 160
𝑊 → 𝑞 ̄𝑞 129100 ± 480 61700 ± 320 38600 ± 220

𝑡 ̄𝑡 45800 ± 140 21100 ± 100 11900 ± 75
dijet 20675500 ± 4700 9421600 ± 2800 5046300 ± 1100

Table 6.2 Event yields for different Run 2 MC samples (normalized to 140 fb−1) after 60% WP
of 𝑋 → 𝑏 ̄𝑏 tagger in different 𝑝𝑇 bins in large-𝑅 jet mass range 50 ≤ 𝑚 < 150 GeV. Statistical
uncertainties of MC samples are shown.

MC Sample 450 ≤ 𝑝𝑇 < 500 GeV 500 ≤ 𝑝𝑇 < 600 GeV 600 ≤ 𝑝𝑇 < 1000 GeV
𝑍 → 𝑏 ̄𝑏 1880 ± 21 1620 ± 17 900 ± 11
𝑍 → 𝑞 ̄𝑞 30.8 ± 9.2 55.4 ± 8.6 36 ± 13
𝑊 → 𝑞 ̄𝑞 74 ± 12 74.5 ± 9.7 75 ± 11

𝑡 ̄𝑡 177.9 ± 9.2 160.2 ± 9.0 88.5 ± 6.8
dijet 40000 ± 210 31800 ± 140 16300 ± 59
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Figure 6.1 The comparison of data and MC samples prediction before 𝑋 → 𝑏 ̄𝑏 tagger for dif-
ferent 𝑝𝑇 bins. Different MC samples are stacked together. The MC error is shown as the shaded
band, but it’s too small to be seen.
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Figure 6.2 The comparison of data and MC samples prediction after 60%WP of 𝑋 → 𝑏 ̄𝑏 tagger
for different 𝑝𝑇 bins. Different MC samples are stacked together. The MC error is shown as the
shaded band.
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6.1.2 Signal and Background Modeling

The multijet background is determined using data-driven techniques. Other back-

grounds and the signal events are modeled using MC simulations. The signal and back-

ground modeling are given in the following sections. Techniques differ for the 𝜇pre-tag and
𝜇post-tag measurements. For the 𝜇post-tag measurement a fit to the 𝑍 → 𝑏 ̄𝑏 mass distribu-
tion is performed, while for the 𝜇pre-tag measurement only signal and background yields
need to be extracted after selections described in Section 5.3. The mass distribution of

𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞, 𝑊 → 𝑞 ̄𝑞, 𝑡 ̄𝑡 templates after tagging are shown in Figure 6.3.
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Figure 6.3 The mass distribution of 𝑍 → 𝑏 ̄𝑏, 𝑍 → 𝑞 ̄𝑞, 𝑊 → 𝑞 ̄𝑞, 𝑡 ̄𝑡 templates after 50%, 60%,
70% and 80% working point of GN2X tagger.
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6.1.2.1 Signal Modeling

Tomodel the𝑍 → 𝑏 ̄𝑏 signal invariant mass distribution for the 𝜇post-tagmeasurement,
a double sided crystal ball (DSCB) function [71] is used:

𝑓(𝑚|𝑚𝑍 , 𝜎𝑍 , 𝛼𝐿, 𝛼𝐻 , 𝑛𝐿, 𝑛𝐻 ) = 𝑁 ⋅

⎧
⎪
⎪
⎨
⎪
⎪
⎩

exp(−𝛼2
𝐿
2 ) [

𝛼𝐿
𝑛𝐿 (

𝑛𝐿
𝛼𝐿

− 𝛼𝐿 − 𝑡)]
−𝑛𝐿 , 𝑡 < −𝛼𝐿

exp(−1
2 𝑡2

) , −𝛼𝐿 ≤ 𝑡 ≤ 𝛼𝐻

exp(−𝛼2
𝐻
2 ) [

𝛼𝐻
𝑛𝐻 (

𝑛𝐻
𝛼𝐻

− 𝛼𝐻 + 𝑡)]
−𝑛𝐻 , 𝑡 > 𝛼𝐻

(6.1)

where 𝑡 = (𝑚 − 𝑚𝑍)/𝜎𝑍 , the first and the third case of the equation describes the tail and

the second case describes the core of the distribution. 𝑁 is a normalization parameter,

𝑚𝑍 and 𝜎𝑍 denote the mean and standard deviation of the Gaussian core. 𝛼𝐿, 𝑛𝐿 and 𝛼𝐻 ,

𝑛𝐻 are the decay constants and normalization on the low and the high side tails.

The parameters of the DSCB function are derived fitting the 𝑍 → 𝑏 ̄𝑏 MC templates

after applying the requirements listed in Section 5.2.

Figure 6.4 and Table 6.3 shows the 𝜒2 fits to the signal MC samples for the 𝑋 → 𝑏 ̄𝑏
tagging requirement at 60% working point for 450 ≤ 𝑝𝑇 < 1000 GeV. Other results for

different working points are shown in Appendix A.2.

Table 6.3 The parameters of the DSCB function from a fit to the 𝑍 → 𝑏 ̄𝑏 template for the
𝑍 → 𝑏 ̄𝑏 MC templates after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at 60% working point for 450 ≤
𝑝𝑇 < 1000 GeV.

𝑁 199.1 ± 1.95
𝑚𝑍 [GeV] 87.2 ± 0.08
𝜎𝑍 [GeV] 7.71 ± 0.09

𝛼𝐿 1.08 ± 0.05
𝑛𝐿 16.0 ± 7.95
𝛼𝐻 2.11 ± 0.04
𝑛𝐻 0.46 ± 0.06
𝜒2 135.8

𝜒2/NDF 1.46

6.1.2.2 Background Modeling

The dominant source of background in the 𝑍 → 𝑏 ̄𝑏 𝜇post-tag measurement is multijet
events. The contribution from𝑊 (→ 𝑞 ̄𝑞)+ jets and 𝑡 ̄𝑡 process is found to be negligible. To
confirm that ignoring them will not bias the yield estimated, a test to model the signal by

comparing between using all MC samples and using only 𝑍 → 𝑏 ̄𝑏 and dijet MC samples
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Figure 6.4 The 𝜒2 fits to the 𝑍 candidate mass distribution (𝑍 → 𝑏 ̄𝑏 template) via a DSCB
function, passing the 𝑋 → 𝑏 ̄𝑏 60% WP for 450 ≤ 𝑝𝑇 < 1000 GeV.

is performed. The results are shown in Figure 6.5 and 6.4. After the test, the number of

signal and background events by fitting is nearly the same. Thus, in this study, only dijet

background is considered.

The modeling of multijet events is performed using classes of exponential and poly-

nomial functions of 2nd to 5th order in bins of the transverse momentum of the 𝑍 → 𝑏 ̄𝑏
candidate. The choice of the functional form is made using binned maximum likeli-

hood fit to the sidebands of the invariant 𝑍 → 𝑏 ̄𝑏 mass distribution in data, defined as

50 < 𝑚𝑍→𝑏 ̄𝑏 < 70 GeV and 110 < 𝑚𝑍→𝑏 ̄𝑏 < 150 GeV. To decide on the suitable number
of free parameters (the order) of the two classes of functions: a 𝐹 -test is performed [72].
The test statistic 𝐹𝑝,𝑞 is calculated as:

𝐹𝑝,𝑞 =
𝜒2

𝑝 − 𝜒2
𝑞

𝑛𝑞 − 𝑛𝑝
/

𝜒2
𝑞

𝑛 − 𝑛𝑞
, (6.2)

where 𝜒2
𝑝 and 𝜒2

𝑞 describe quantitatively the goodness of the fit, computed in 𝑛 bins of

two fits with 𝑛𝑝 and 𝑛𝑞 degrees of freedom. The optimal functions to describe the multijet

background are summarised in Table 6.5 [73]. These functions are used in the final fit
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Figure 6.5 The 𝜒2 fits to the 𝑍 candidate mass distribution based on only 𝑍 → 𝑏 ̄𝑏 and dijet MC
templates (left) and all MC templates (right), passing the 𝑋 → 𝑏 ̄𝑏 60% WP for 450 ≤ 𝑝𝑇 < 500
GeV.

Table 6.4 The parameters of fitting signal and backgroundmodels for different background treat-
ments (only dijet or dijet+𝑊 + 𝑡 ̄𝑡) after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at 60% working point
for 450 ≤ 𝑝𝑇 < 500 GeV.

Parameter 𝑍 → 𝑏 ̄𝑏 and dijet 𝑍 → 𝑏 ̄𝑏, dijet, 𝑊 → 𝑞 ̄𝑞, 𝑡 ̄𝑡
𝑚𝑍 [GeV] 84 ± 1.1 84 ± 1.2
𝜎𝑍 [GeV] 7.71 (fixed) 7.71 (fixed)

𝛼𝐿 1.08 (fixed) 1.08 (fixed)
𝑛𝐿 16.0 (fixed) 16.0 (fixed)
𝛼𝐻 2.11 (fixed) 2.11 (fixed)
𝑛𝐻 0.46 (fixed) 0.46 (fixed)
𝑎0 −34 ± 58 −29 ± 55
𝑎1 1110 ± 40 1100 ± 60
𝑎2 −1344.1 ± 5.3 −1350 ± 65
𝑎3 459.7 ± 4.6 460 ± 24
𝜒2 129.9 130.5

𝜒2/NDF 1.38 1.39

Signal 1550 ± 254 1530 ± 244
Background 40350 ± 325 40170 ± 318
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described in Section 7.2.

Table 6.5 Optimal functions to describe the multijet background in the 𝜇post-tag measurement.

𝑍 → 𝑏 ̄𝑏 𝑝𝑇 bin Optimal function

450 ≤ 𝑝𝑇 < 500 GeV ∑3
𝑖=0 𝑎𝑖 (

𝑚
100[GeV] )

𝑖

500 ≤ 𝑝𝑇 < 500 GeV ∑3
𝑖=0 𝑎𝑖 (

𝑚
100[GeV] )

𝑖

600 ≤ 𝑝𝑇 < 1000 GeV 𝑎0 exp(∑3
𝑖=1 𝑎𝑖 (

𝑚
100[GeV] )

𝑖

)

6.2 Modeling for the 𝜇pre-tag Measurement
6.2.1 Comparison of Data and Simulation

Figure 6.6 shows one of the most representative distributions for the𝑍 → ℓ+ℓ−+jets
process, the 𝑍-boson invariant mass distribution in various 𝑍-boson candidate 𝑝𝑇 bins.

A good shape agreement between data and MC simulation is found.

6.2.2 Signal and Background Modeling

To extract signal events of 𝑍(→ ℓℓ) + jets, MC simulated events are used. the

background events are subtracted from the number of observed events. The background

events are obtained from the MC simulation of 𝑍𝑍, 𝑊 𝑍, 𝑊 𝑊 , 𝑍𝜏𝜏 and 𝑊 ℓ𝜈. The
main backgrounds are 𝑊 𝑍 and 𝑍𝑍 diboson processes but they are small. Only total

yields are needed to calculate 𝜇pre-tag.
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(c) 600 ≤ 𝑝𝑇 < 1000 GeV
Figure 6.6 The comparison of data and MC prediction for 𝑍 → ℓ+ℓ− in three 𝑍-boson 𝑝𝑇 bins.

49





Chapter 7 Results

Chapter 7 Results

In Section 7.1, the systematic uncertainties for this calibration are explained. Some

values are based on previous studies. Then, the results are shown in Section 7.2.

7.1 Systematic Uncertainties

In the previous study [22], several different systematic uncertainties were studied:

• 𝑍 + jets modeling

• Fit model

• Spurious signal

• Other background modeling

• Lepton related (momentum scale and resolution, identification and trigger)

• Jet related (mass scale, mass resolution and energy scale, trigger)

The uncertainties evaluated in this thesis are as follows. But for others, the numbers

are reused due to a delay in the MC preparation and so on.

Statistical Uncertainties The statistical uncertainties of the Monte Carlo simulations

are considered for all analyses.

𝑍 + jets modeling The uncertainty considered for 𝑍 → 𝑏 ̄𝑏 shall be estimated using the
alternative generator, but in this thesis, this uncertainty is not considered due to the MC

sample preparation problem. The uncertainty considered for 𝑍 → ℓℓ are estimated by

three aspects: generator uncertainty (Sherpa 2.2.8 VS MadGraph+Pythia8), scale uncer-

tainties and PDF+𝛼𝑠 uncertainties. The details are as shown in Appendix A.5. However,

in this thesis, the values of 𝑍 + jets modeling uncertainties are reused from the previous

study [22], because those results cover both𝑍 → 𝑏 ̄𝑏 and𝑍 → ℓℓmodeling uncertainties.

Fit Model for 𝜇post-tag An additional systematic uncertainty on the fit model due to

the choice of the fit mass range is added. The signal strength 𝜇post-tag is evaluated for one
alternativemass range (50-140GeV). The uncertainty is estimated by taking the difference
between the nominal and alternative fit results. The fit parameters are shown in Appendix

A.3.
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Spurious Signal for 𝜇post-tag The spurious signal is evaluated by fitting the mass distri-

bution of the background-only MC samples with the signal plus background model. The

spurious signal is defined as the fitted signal strength. The spurious signal test results are

shown in Appendix A.4.

Other BackgroundModeling for 𝜇pre-tag A20% normalization uncertainty is assigned

to the 𝑉 𝑉 (𝑊 𝑊 , 𝑍𝑍, 𝑊 𝑍) background. The uncertainty is estimated by recalculating
the 𝜇pre-tag and extracting the SFs again.

7.2 Results

The 𝜇post-tag parameter is measured using the 𝑍 → 𝑏 ̄𝑏 invariant mass distribution for
the three large-𝑅 jet 𝑝𝑇 bins mentioned above. To extract the signal strength, a binned

maximum likelihood fit is performed. The functional form that describes the smooth

background is chosen using the method in Section 6.1.2.2.

Figure 7.1 shows the 𝑍 → 𝑏 ̄𝑏 candidate invariant mass distribution after the fit and
applying the GN2X tagger at 60% working point. The pulls, defined as data minus fitted

model prediction divided by the data statistical uncertainty, are mostly within 3 standard

deviations. The fitting parameters are shown in Table 7.1. We perform the same fitting

using MC samples, and the results are shown in Table 7.2. The 𝜇post-tag can be calculated
as shown in Table 7.3. The data statistical uncertainty is calculated by setting the MC

statistical uncertainty to zero, while the MC statistical uncertainty is the opposite.

The 𝜇pre-tag parameter is calculated as a ratio of observed yields in data minus the
expected background yields divided by the expected 𝑍 → ℓ+ℓ− signal yields as shown

in Equation 5.3. All yields are determined after the𝑍 → ℓ+ℓ− selection requirements for

each 𝑍-boson candidate 𝑝𝑇 bins. The 𝜇pre-tag are shown in Table 7.4 with the observed
yields and expected signal and background. Similar to the 𝜇post-tag, the data statistical
uncertainty is calculated by setting the MC statistical uncertainty to zero, while the MC

statistical uncertainty is the opposite.

From the 𝜇post-tag and 𝜇pre-tag shown before, a SF for each 𝑝𝑇 region can be obtained

as shown in Table 7.5. Some other systematic uncertainties are not estimated in this thesis,

the values from the previous study [22] are reused, including 𝑍 + jets modeling, spurious

signal, lepton related, jet mass scale, jet mass resolution and jet energy scale.
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(c) 600 < 𝑝𝑇 < 1000 GeV
Figure 7.1 The 𝑍 → 𝑏 ̄𝑏 candidate invariant mass distribution and applying the 𝑍(→ 𝑏 ̄𝑏) + jets
selection and the 𝑋 → 𝑏 ̄𝑏 60% WP for events with the large-𝑅 jet 𝑝𝑇 in the 450 < 𝑝𝑇 < 500
GeV(a); 500 < 𝑝𝑇 < 600 GeV(b); 600 < 𝑝𝑇 < 1000 GeV(c) range. The fit result is shown by a
red solid curve. Signal (green) and background (blue) components are shown.

53



Chapter 7 Results

Table 7.1 The parameters of fitting the real data after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at 60%
working point for different 𝑝𝑇 bins.

Parameter
Large-𝑅 jet 𝑝𝑇

450-500 GeV 500-600 GeV 600-1000 GeV

𝑚𝑍 82.4 ± 0.8 84.1 ± 0.8 85.3 ± 1.1
𝜎𝑍 7.71 (fixed) 7.71 (fixed) 7.71 (fixed)
𝛼𝐿 1.08 (fixed) 1.08 (fixed) 1.08 (fixed)
𝑛𝐿 16.0 (fixed) 16.0 (fixed) 16.0 (fixed)
𝛼𝐻 2.11 (fixed) 2.11 (fixed) 2.11 (fixed)
𝑛𝐻 0.46 (fixed) 0.46 (fixed) 0.46 (fixed)
𝑎0 347 ± 25 175 ± 21 35.9 ± 1.7
𝑎1 935 ± 59 1134 ± 47 6.8 ± 0.1
𝑎2 −1310 ± 54 −1470 ± 41 −7.9 ± 0.1
𝑎3 470 ± 21 510 ± 17 2.70 ± 0.04
𝜒2 114.1 116.1 103.9

𝜒2/NDF 1.21 1.23 1.11

Signal 2343 ± 252 1729 ± 230 904 ± 135
Background 45440 ± 327 35930 ± 295 17750 ± 186
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Table 7.2 The parameters of fitting the MC samples after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at
60% working point for different 𝑝𝑇 bins.

Parameter
Large-𝑅 jet 𝑝𝑇

450-500 GeV 500-600 GeV 600-1000 GeV

𝑚𝑍 83.9 ± 1.1 84.9 ± 0.6 86.9 ± 0.5
𝜎𝑍 7.71 (fixed) 7.71 (fixed) 7.71 (fixed)
𝛼𝐿 1.08 (fixed) 1.08 (fixed) 1.08 (fixed)
𝑛𝐿 16.0 (fixed) 16.0 (fixed) 16.0 (fixed)
𝛼𝐻 2.11 (fixed) 2.11 (fixed) 2.11 (fixed)
𝑛𝐻 0.46 (fixed) 0.46 (fixed) 0.46 (fixed)
𝑎0 −34 ± 58 88 ± 73 47 ± 84
𝑎1 1110 ± 40 990 ± 73 8.1 ± 0.6
𝑎2 −1344.1 ± 5.3 −1328 ± 81 −9.6 ± 0.6
𝑎3 459.7 ± 4.6 477 ± 31 3.3 ± 0.2
𝜒2 130.1 89.3 94.2

𝜒2/NDF 1.40 0.96 1.01

Signal 1550 ± 254 1840 ± 163 844 ± 72
Background 40400 ± 330 31680 ± 210 16460 ± 93

Table 7.3 Post-tag (𝜇post-tag) signal strength for the 𝑋 → 𝑏 ̄𝑏 tagger at 60 % efficiency WP mea-
sured using 𝑍(→ 𝑏 ̄𝑏) + jets calibration methods.

𝑝𝑇 [GeV] 450 < 𝑝𝑇 < 500 500 < 𝑝𝑇 < 600 600 < 𝑝𝑇 < 1000
𝑁data

𝑍𝑏𝑏,GN2X60%
2343 ± 252 1729 ± 230 904 ± 135

𝑁MC
𝑍𝑏𝑏,GN2X60%

1547 ± 254 1841 ± 163 844 ± 72
𝜇post-tag 1.515 ± 0.297 0.939 ± 0.150 1.071 ± 0.184

Data stat. error 0.163 0.125 0.160

MC stat. error 0.249 0.083 0.091

Table 7.4 Pre-tag (𝜇pre-tag) signal strengthmeasured using𝑍(→ ℓ+ℓ−)+jets calibrationmethods.

𝑝𝑇 [GeV] 450 < 𝑝𝑇 < 500 500 < 𝑝𝑇 < 600 600 < 𝑝𝑇 < 1000
𝑁data

ℓℓ 1967 1827 1137

𝑁MC
bkg,ℓℓ 97.3 ± 2.4 49.7 ± 1.5 34.3 ± 1.2

𝑁MC
𝑍→ℓℓ 1607.5 ± 6.9 1559.9 ± 6.1 891.2 ± 3.9

𝜇pre-tag 1.163 ±0.028 1.139 ±0.028 1.237 ±0.038

Data stat. error 0.028 0.027 0.038

MC stat. error 0.005 0.005 0.006
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Table 7.5 Pre-tag (𝜇pre-tag) and post-tag (𝜇post-tag) signal strength and the resulting signal ef-
ficiency scale factors (SF) for the 𝑋 → 𝑏 ̄𝑏 tagger at 60 % efficiency WP measured using
𝑍(→ 𝑏 ̄𝑏) + jets calibration methods. Systematic uncertainties are also shown.

𝑝𝑇 [GeV] 450 < 𝑝𝑇 < 500 500 < 𝑝𝑇 < 600 600 < 𝑝𝑇 < 1000

𝜇post-tag 1.52 0.94 1.07

𝜇pre-tag 1.16 1.14 1.24

SF 1.30 0.83 0.87

Uncertainty (±𝜎) of SFs
Data stat. 0.14 0.11 0.13

Others from previous study [22] 0.34 0.21 0.21

Syst. (𝜇post-tag)
MC stat. 0.21 0.07 0.07

Fit model 0.16 0.10 0.02

Spurious signal 0.21 0.03 0.08

Syst. (𝜇pre-tag)
MC stat. <0.01 <0.01 <0.01

Other background modeling 0.01 <0.01 <0.01

Total uncertainty 0.50 0.27 0.27
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Chapter 8 Conclusion and Outlook

The Higgs boson generated with high transverse momentum presents an opportunity

for measuring the charm Yukawa coupling, and also exhibits sensitivity to novel physics.

To explore the Higgs boson under these conditions, advanced techniques for object recon-

struction and identification, and innovative strategies for physics analysis are essential.

Throughout this thesis, the in-situ calibration of a novel 𝑋 → 𝑏 ̄𝑏 tagger using 𝑍(→
𝑏 ̄𝑏) + jets events is presented, and an attempt to improve the performance of the 𝑋 → 𝑏 ̄𝑏
tagger is made.

Calibrating the𝑋 → 𝑏 ̄𝑏 tagger is a crucial endeavor to enable its utilization in physics
analyses focused on boosted 𝑏 ̄𝑏 and even 𝑐 ̄𝑐 topologies. 𝑍 + jets events are employed to

determine signal scale factors for 𝑝𝑇 > 450GeV using data collected by the ATLAS

experiment in Run 2. Dijet, ̄𝑡𝑡, and 𝑊 + jets are considered as background. The dijet

background is modeled by fitting the data directly using an exponentiated polynomial or

polynomial function, depending on 𝑝𝑇 . While other backgrounds are negligible small and

neglected. The scale factors measured for the 𝑋 → 𝑏 ̄𝑏 tagger at 60% working point (WP)

are 1.30 ± 0.50 for 450 < 𝑝𝑇 < 500GeV, 0.83 ± 0.27 for 500 < 𝑝𝑇 < 600GeV, and
0.87 ± 0.27 for 600 < 𝑝𝑇 < 1000GeV. This calibration is achieved by the methodology
documented in Ref. [22].

Concerning the calibration work, some improvements can be made in the future as

follows.

Systematic Uncertainties All the systematic uncertainties described in Section 7.1 shall

be evaluated. Due to theMC samples preparation problem etc., only part of the systematic

uncertainties is considered in this thesis. For example, the uncertainties on the modeling

of the 𝑍 + jets events can be evaluated using the alternative Herwig++ generator [74]

samples. Also, a spurious signal uncertainty can be evaluated by applying signal + back-

ground fit to the mass distribution of the background-only MC samples.

Unbinned Fit The binned fit is used for 𝜇post-tag in this thesis, which differs from the

unbinned fit used in the calibration work before [22]. Though the unbinned fit will take

more time to perform, it is more accurate than the binned fit, and thus should reduce the

systematic uncertainties of the scale factors.
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Tagger Efficiency-Mass Dependence From the comparison plots of data andMC sam-

ples, the tagger efficiency is seen to be dependent on the large-𝑅 jet mass, causing the

curve of the dijet background to be not a smooth falling curve but wiggled and thus it

increases the difficulty of the background modeling. In this thesis, some parameters of

the modeling functions are fixed, which may cause the systematic uncertainties to be un-

derestimated.

The investigations into boosted Higgs boson physics presented in this thesis, includ-

ing the 𝑋 → 𝑏 ̄𝑏 tagger introduction, calibration and improvement, has the potential for
significant value in future searches. The methodology used to calibrate the 𝑋 → 𝑏 ̄𝑏
tagger using 𝑍 → 𝑏 ̄𝑏 events, can be also applied to calibrate the 𝑋 → 𝑐 ̄𝑐 tagger, and

potentially enables the observation of 𝐻 → 𝑐 ̄𝑐 (charm Yukawa), which is a goal of my

further research. Also, these investigations carry relevance for the LHC Run 3 and up-

coming HL-LHC plans, and we look forward to obtaining further insights in the future

regarding boosted Higgs boson studies and new physics searches.
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Appendix A Additional Plots

A.1 Additional Plots for Comparison of Data and Simulation
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Figure A.1 The comparison of data andMC samples prediction after 50%WP of𝑋 → 𝑏 ̄𝑏 tagger
for different 𝑝𝑇 bins. Different MC samples are stacked together. The MC error is shown as the
shaded band.
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Figure A.2 The comparison of data andMC samples prediction after 70%WP of𝑋 → 𝑏 ̄𝑏 tagger
for different 𝑝𝑇 bins. Different MC samples are stacked together. The MC error is shown as the
shaded band.
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Figure A.3 The comparison of data andMC samples prediction after 80%WP of𝑋 → 𝑏 ̄𝑏 tagger
for different 𝑝𝑇 bins. Different MC samples are stacked together. The MC error is shown as the
shaded band.
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A.2 Additional Plots and Tables for Signal Modeling
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Figure A.4 The 𝜒2 fits to the 𝑍 candidate mass distribution via a DSCB function, passing the
𝑋 → 𝑏 ̄𝑏 50% WP for 450 ≤ 𝑝𝑇 < 1000 GeV.

Table A.1 The parameters of the DSCB function for the𝑍 → 𝑏 ̄𝑏MC templates after the𝑋 → 𝑏 ̄𝑏
tagging requirement at 50% working point for 450 ≤ 𝑝𝑇 < 1000 GeV.

𝑁 172.4 ± 4.37
𝑚𝑍 87.2 ± 0.20
𝜎𝑍 7.56 ± 0.22
𝛼𝐿 1.08 ± 0.10
𝑛𝐿 13.1 ± 11.7
𝛼𝐻 2.08 ± 0.13
𝑛𝐻 0.62 ± 0.18
𝜒2 135.4

𝜒2/NDF 1.46

Yield 3709.8

68



Appendix A Additional Plots

50 60 70 80 90 100 110 120 130 140 150
Leading large-R jet mass [GeV]

50

100

150

200

250

300

N
um

be
r 

of
 e

ve
nt

s

Xbb 70%
^2/NDF: 1.637χ Zbb

fit

50 60 70 80 90 100 110 120 130 140 150
Leading large-R jet mass [GeV]

5−

0

5

P
ul

l

Figure A.5 The 𝜒2 fits to the 𝑍 candidate mass distribution via a DSCB function, passing the
𝑋 → 𝑏 ̄𝑏 70% WP for 450 ≤ 𝑝𝑇 < 1000 GeV.

Table A.2 The parameters of the DSCB function for the𝑍 → 𝑏 ̄𝑏MC templates after the𝑋 → 𝑏 ̄𝑏
tagging requirement at 70% working point for 450 ≤ 𝑝𝑇 < 1000 GeV.

𝑁 227.5 ± 4.74
𝑚𝑍 87.3 ± 0.18
𝜎𝑍 7.86 ± 0.18
𝛼𝐿 1.11 ± 0.10
𝑛𝐿 13.6 ± 11.8
𝛼𝐻 2.12 ± 0.08
𝑛𝐻 0.31 ± 0.08
𝜒2 152.1

NDF 93

𝜒2/NDF 1.64

Yield 5189.3
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Figure A.6 The 𝜒2 fits to the 𝑍 candidate mass distribution via a DSCB function, passing the
𝑋 → 𝑏 ̄𝑏 80% WP for 450 ≤ 𝑝𝑇 < 1000 GeV.

Table A.3 The parameters of the DSCB function for the𝑍 → 𝑏 ̄𝑏MC templates after the𝑋 → 𝑏 ̄𝑏
tagging requirement at 80% working point for 450 ≤ 𝑝𝑇 < 1000 GeV.

𝑁 252.5 ± 5.01
𝑚𝑍 87.4 ± 0.17
𝜎𝑍 8.00 ± 0.18
𝛼𝐿 1.14 ± 0.10
𝑛𝐿 9.24 ± 5.80
𝛼𝐻 2.11 ± 0.07
𝑛𝐻 0.23 ± 0.07
𝜒2 164.2

NDF 93

𝜒2/NDF 1.77

Yield 5943.0
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A.3 Additional Results for Fit Model Uncertainties

Table A.4 The parameters of fitting the real data after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at 60%
working point for different 𝑝𝑇 bins for alternative mass range.

Parameter
Large-𝑅 jet 𝑝𝑇 [GeV]

450-500 GeV 500-600 GeV 600-1000 GeV

𝑚𝑍 82.9 ± 0.78 84.7 ± 0.89 85.4 ± 1.13
𝜎𝑍 7.73 (fixed) 7.73 (fixed) 7.73 (fixed)
𝛼𝐿 1.08 (fixed) 1.08 (fixed) 1.08 (fixed)
𝑛𝐿 16.4 (fixed) 16.4 (fixed) 16.4 (fixed)
𝛼𝐻 2.12 (fixed) 2.12 (fixed) 2.12 (fixed)
𝑛𝐻 0.44 (fixed) 0.44 (fixed) 0.44 (fixed)
𝑎0 8.60 ± 9.37 −111.7 ± 7.85 30.63 ± 1.59
𝑎1 2139.8 ± 12.66 2153.0 ± 10.42 7.34 ± 0.10
𝑎2 −2645.0 ± 8.35 −2602.8 ± 11.96 −8.56 ± 0.10
𝑎3 942.5 ± 6.46 914.5 ± 7.21 2.93 ± 0.06
𝜒2 97.1 101.0 100.6

𝜒2/NDF 1.16 1.20 1.20

Signal 2055.5 1520.3 889.0
Background 46114.4 36478.4 17696.8

A.4 Additional Results for Spurious Signal Test

Table A.5 The parameters of fitting the mass distribution of the dijet MC samples using signal
plus background model after the 𝑋 → 𝑏 ̄𝑏 tagging requirement at 60% working point for different
𝑝𝑇 bins.

Parameter
Large-𝑅 jet 𝑝𝑇 [GeV]

450-500 GeV 500-600 GeV 600-1000 GeV

Spurious Signal −502.386 ± 240.502 −23.9656 ± 155.688 −111.684 ± 62.2142
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A.5 Additional Results for 𝜇pre-tag Measurement
Table A.6 Systematics on 𝜇pre−tag,
450 < 𝑝𝑇 < 500

Modeling 𝑍(ℓℓ) + jets +0.18
−0.14

Modeling 𝑍𝑍 ±0.002
Modeling 𝑊 𝑍 ±0.004
Modeling 𝑊 𝑊 ±0.000
Modeling 𝑍(𝜏𝜏) + jets ±0.006
Modeling 𝑊 (ℓ𝜈) + jets ±0.000
Luminosity +0.02

−0.02
Total +0.18

−0.14

Table A.7 Yields, 450 < 𝑝𝑇 < 500

𝑍(ℓℓ) + jets 1607.5 ± 6.9
𝑍𝑍 15.3 ± 0.8
𝑊 𝑍 31.6 ± 1.2
𝑊 𝑊 0.0 ± 0.0
𝑍(𝜏𝜏) + jets 50.4 ± 1.9
𝑊 (ℓ𝜈) + jets 0.08 ± 0.05
Background 97.3 ± 2.4
signal + background 1704.8 ± 7.3
data 1967

Table A.8 Systematics on 𝜇pre−tag,
500 < 𝑝𝑇 < 600

Modeling 𝑍(ℓℓ) + jets +0.11
−0.09

Modeling 𝑍𝑍 ±0.002
Modeling 𝑊 𝑍 ±0.004
Modeling 𝑊 𝑊 ±0.000
Modeling 𝑍(𝜏𝜏) + jets ±0.000
Modeling 𝑊 (ℓ𝜈) + jets ±0.000
Luminosity +0.02

−0.02
Total +0.11

−0.10

Table A.9 Yields, 500 < 𝑝𝑇 < 600

𝑍(ℓℓ) + jets 1559.9 ± 6.1
𝑍𝑍 15.4 ± 0.9
𝑊 𝑍 34.1 ± 1.3
𝑊 𝑊 0.0 ± 0.0
𝑍(𝜏𝜏) + jets 0.14 ± 0.07
𝑊 (ℓ𝜈) + jets 0.10 ± 0.06
Background 49.7 ± 1.5
signal + background 1609.6 ± 6.3
data 1827

Table A.10 Systematics on 𝜇pre−tag,
600 < 𝑝𝑇 < 1000

Modeling 𝑍(ℓℓ) + jets +0.41
−0.25

Modeling 𝑍𝑍 ±0.002
Modeling 𝑊 𝑍 ±0.006
Modeling 𝑊 𝑊 ±0.000
Modeling 𝑍(𝜏𝜏) + jets ±0.000
Modeling 𝑊 (ℓ𝜈) + jets ±0.000
Luminosity +0.02

−0.02
Total +0.42

−0.25

Table A.11 Yields, 600 < 𝑝𝑇 < 1000

𝑍(ℓℓ) + jets 891.2 ± 3.9
𝑍𝑍 6.8 ± 0.6
𝑊 𝑍 27.4 ± 1.1
𝑊 𝑊 0.0 ± 0.0
𝑍(𝜏𝜏) + jets −0.03 ± 0.10
𝑊 (ℓ𝜈) + jets 0.12 ± 0.05
Background 34.3 ± 1.2
signal + background 925.5 ± 4.1
data 1137
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Appendix B Identifying Boosted Higgs Bosons
Decaying using Graph Neural Network

B.1 Introduction

GN2X, a new algorithm has been developed to identify the decays of high-𝑝𝑇 Higgs

bosons to 𝑏 ̄𝑏/𝑐 ̄𝑐 pairs. This algorithm is trained to classify large-𝑅 jets based on their

origin, discriminating jets. The background processes are considered to be multijet pro-

cesses and fully hadronic top-quark decays. GN2X utilizes the recent advances in graph

neural networks (GNNs) and transformer architectures to learn the jet substructure.

In GN2X, the charged particle trajectories within the large-𝑅 jet are employed to dis-

cern the characteristic indicators of 𝑏- and 𝑐-hadron decays: displaced secondary (and
perhaps tertiary, in the case of 𝑏-hadrons) vertices and tracks with substantial impact pa-
rameters. Other GN2X versions are also investigated, where trajectories are amalgamated

with large-𝑅 jet calorimeter constituents and subjets.

B.2 Neural Network Architecture and Training

The base GN2X model takes three large-𝑅 jet variables and 20 variables associated

with each track as input to the network. The large-𝑅 jet inputs include the jet transverse

momentum, signed pseudorapidity, and mass. The complete set of inputs is presented in

Table B.1. Up to 100 tracks associated with the jet are provided to the network, sorted by

decreasing transverse impact parameter significance denoted as 𝑠(𝑑0).
The GN2X architecture is an advancement of the GN1 architecture [B.1], as shown

in Figure B.2. GN1 employs a Graph Neural network, while GN2X (and GN2) adopts

a Transformer network architecture [B.2]. The model receives the sequence of tracks in

a jet as input, with jet- and track-level inputs. Concatenating the jet and track inputs, as

shown in Figure B.1, the resulting combined jet-track sequence vectors are input into a

per-track initializer network. The initializer network for each input type comprises two

dense layers projecting the input representations to an embedding dimension of 192.

The track representations feed into a Transformer Encoder, where the transformer

architecture utilized aligns with that introduced in Ref. [B.3]. Multiple Layer Normaliza-

tion layers [B.4] are incorporated to enhance stability during training, along with residual
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Table B.1 Input features to the GN2X model.

Jet Input Description

𝑝𝑇 Large-𝑅 jet transverse momentum

𝜂 Signed large-𝑅 jet pseudorapidity

mass Large-𝑅 jet mass

Track Input Description

𝑞/𝑝 Track charge divided by momentum (a measure of curvature)

𝑑𝜂 Pseudorapidity of track relative to the large-𝑅 jet 𝜂
𝑑𝜙 Azimuthal angle of the track, relative to the large-𝑅 jet 𝜙
𝑑0 Closest distance from track to primary vertex (PV) in the transverse plane

𝑧0 sin 𝜃 Closest distance from track to PV in the longitudinal plane

𝜎(𝑞/𝑝) Uncertainty on 𝑞/𝑝
𝜎(𝜃) Uncertainty on track polar angle 𝜃
𝜎(𝜙) Uncertainty on track azimuthal angle 𝜙
𝑠(𝑑0) Lifetime signed transverse IP significance

𝑠(𝑧0 sin 𝜃) Lifetime signed longitudinal IP significance

nPixHits Number of pixel hits

nSCTHits Number of SCT hits

nIBLHits Number of IBL hits

nBLHits Number of B-layer hits

nIBLShared Number of shared IBL hits

nIBLSplit Number of split IBL hits

nPixShared Number of shared pixel hits

nPixSplit Number of split pixel hits

nSCTShared Number of shared SCT hits

labels for training, truth production vertices within 0.1 mm are merged. Track-pairs where one or both
of the tracks in the pair have an origin label of either Pileup or Fake are given a label of 0. Using the
pairwise predictions from the model, collections of commonly compatible tracks can be grouped into
vertices. The addition of this auxiliary training objective removes the need for inputs from a dedicated
secondary vertexing algorithm.

Both auxiliary training objectives can be considered as “stepping stones” on the way to classifying the
flavour of the jet. By requiring the model to predict the truth origin of each track and the vertex compatibility
of each track-pair, the model is guided to learn representations of the jet which are connected to the
underlying physics and therefore relevant for classifying the jet flavour.

3.3 Architecture

As discussed above, the GN1 model combines a graph neural network architecture [38] with auxiliary
training objectives in order to determine the jet flavour. Coarse optimisation of the network architecture
hyperparameters, for example number of layers and number of neurons per layer, has been carried out to
maximise the tagging efficiency.

The model architecture is based on a previous implementation of a graph neural network jet tagger [9].
As compared to the previous approach, GN1 uses a only a single graph neural network and makes use of
a more sophisticated graph neural network layer [39], described below. These changes yield improved
tagging performance and a significant reduction in training time with respect to the previous approach.

The model takes jet- and track-level information as inputs, as detailed in Section 3.1. The jet inputs are
concatenated with each track’s inputs, as shown in Fig. 2. The combined jet-track vectors are then fed into
a per-track initialisation network with three hidden layers, each containing 64 neurons, and an output layer
with a size of 64, as shown in Fig. 3. The track initialisation network is similar to a Deep Sets model [40],
but does not include a reduction operation (mean or summation) over the output track representations.

Figure 2: The inputs to GN1 are the two jet features (𝑛jf = 2), and an array of 𝑛tracks, where each track is described by
21 track features (𝑛tf = 21). The jet features are copied for each of the tracks, and the combined jet-track vectors of
length 23 form the inputs of GN1.

A fully connected graph is built from the outputs of the track initialisation network, such that each node in
the graph neighbours every other node. Each node ℎ𝑖 in the graph corresponds to a single track in the jet,
and is characterised by a feature vector, or representation. The per-track output representations from the
initialisation networks are used to populate the initial feature vectors of each node in the graph. In each
layer of the graph network, output node representations ℎ′

𝑖
are computed by aggregating the features of ℎ𝑖

and neighbouring nodes N𝑖 as described in Ref. [39]. First, the feature vectors of each node are fed into a
fully connected layer W, to produce an updated representation of each node Wℎ𝑖 . These updated feature
vectors are used to compute edge scores 𝑒(ℎ𝑖 , ℎ 𝑗) for each node pair,

8

Figure B.1 The inputs to the GN2X model are the two jet features (𝑛jf = 3), and an array of 𝑛t,
where each track is described by 20 track features (𝑛tf = 20). The jet features are copied for each
of the tracks, and the combined jet-track vectors of length 23 form the inputs of GN2X [B.1].
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𝑒(ℎ𝑖 , ℎ 𝑗) = a⊥𝜃
[
Wℎ𝑖 ⊕ Wℎ 𝑗

]
, (1)

where ⊕ denotes vector concatenation, 𝜃 is a non-linear activation function, and a is a second fully
connected layer. These edge scores are then used to calculate attention weights 𝑎𝑖 𝑗 for each pair of nodes
using the softmax function over the edge scores

𝑎𝑖 𝑗 = softmax 𝑗

[
𝑒(ℎ𝑖 , ℎ 𝑗)

]
. (2)

Finally, the updated node representation ℎ′
𝑖

is computed by taking the weighted sum over each updated
node representation Wℎ𝑖 , with weights 𝑎𝑖 𝑗

ℎ′𝑖 = 𝜎


∑︁
𝑗∈N𝑖

𝑎𝑖 𝑗 · Wℎ 𝑗

 . (3)

The above set of operations constitute a single graph network layer. Three such layers are stacked to
construct the graph network, representing a balance between achieving optimal performance and preventing
overtraining. The final output node feature vectors from the network are representations of each track that
are conditional on the other tracks in the jet. The output representation for each track is combined using
a weighted sum to construct a global representation of the jet, where the attention weights for the sum
are learned during training. Three separate fully connected feedforward neural networks are then used to
independently perform the different classification objectives of GN1. Each of the objectives makes use of
the global representation of the jet. A summary of the different classification networks used for the various
training objectives is shown in Table 4.

A node classification network, which takes as inputs the features from a single output node from the graph
network and the global jet representation, predicts the track truth origin, as defined in Table 3. This
network has three hidden layers containing 128, 64 and 32 neurons respectively, and an output size of
seven, corresponding to the seven different truth origins.

9

Figure B.2 The network architecture of GN1. Inputs are fed into a per-track initialization net-
work, which outputs an initial latent representation of each track. These representations are then
used to populate the node features of a fully connected graph network. After the graph network,
the resulting node representations are used to predict the jet flavor, the track origins, and the track-
pair vertex compatibility [B.1]

.

connections. GN2X employs 6 encoder blocks with 4 attention heads. The heteroge-

neous models refrain from using separate transformer encoders for each input type, given

the substantial increase in parameter count.

The resulting representation of each track is then combined to create a global rep-

resentation of the jet for classification. This global representation is crafted through a

weighted sum over the track representations, where the attention weights for the sum are

learned during training.

GN2X undergoes training employing a method akin to GN1 [B.1]. The training ses-

sions for GN2X are conducted on a cluster equipped with 4 NVIDIA A100 GPUs, requir-

ing approximately 1 hour to complete an epoch comprising 62 million jets. The model is

fine-tuned utilizing theAdamoptimizer with a batch size of 1,000 for 40 epochs. Through-

out the training process, the primary and auxiliary tasks of the model are assigned weights

to ensure that their losses are of comparable magnitude, mirroring the approach used in

Ref. [B.1]. Additionally, the model is subjected to training with a one-cycle learning rate

policy, wherein the learning rate initiates at a minimal value of 10−7 and steadily increases

over the initial 4 epochs, reaching a maximum value of 0.005. Subsequently, the learning

rate undergoes a gradual decrease, concluding at 10−7.
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Appendix C Studies of training GN2X tagger using
Equivariant Subgraph Aggregation Networks

This appendix presents a study of training the GN2X tagger using a new method

called subgraphs. It’s based on an architecture called Equivariant Subgraph Aggregation

Networks (ESANs) [C.1].

C.1 Motivation

The architectures of Message-Passing Neural Networks (MPNNs) are at most as ex-

pressive as the Weisfeiler-Lehman Graph Isomorphism Test (WL test) [C.2]. However,

theWL test sometimes cannot distinguish between very simple graphs, as shown in Figure

C.1. To overcome this limitation, an observation is that these graphs may not be distin-

guishable by an MPNN, but they often contain distinguishable subgraphs. Thus, ESANs

represent each graph as a set of subgraphs derived by some predefined policy.

Figure C.1 Left: A pair of graphs not distinguishable by the WL test. Right: The corresponding
bags (multisets) of edge-deleted subgraphs, which can be distinguished by ESAN [C.1].

Considering the subjets structure of large-𝑅 jets for the boosted Higgs boson tagging,

an idea to improve the current performance of the GN2X tagger is to use the subjets as

inputs of the GN2X tagger.
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C.2 Architecture and Training

ESAN uses bags of subgraphs as inputs, as shown in Figure C.2. To generate sub-

graphs, a policy called node-deleted policy is used. In this policy, a graph is mapped to

the set containing all subgraphs that can be obtained from the original graph by remov-

ing a single node. Notably, only 3 nodes to remove are considered in this study. The

inputs, which are bags of subgraphs, are fed into an architecture called DSS-GNN, which

is shown in Figure C.3.

Figure C.2 The symmetry structure of a bag of subgraphs, in this case, the set of all 𝑚 = 3
edge-deleted subgraphs. This set of subgraphs is represented as an 𝑚 × 𝑛 × 𝑛 tensor [C.1].

Figure C.3 DSS-GNN layers and architecture. Left panel: the DSS-GNN architecture is com-
posed of three blocks: a Feature Encoder, a Readout Layer and a Set Encoder. Right panel:
a DSS-GNN layer is constructed from a Siamese part (orange) and an information-sharing part
(yellow) [C.1].

In this study, the DSS-GNN architecture will replace the GNN part of the GN2X tag-

ger. Inside the DSS-GNN, a so-called H-equivariant Layer is used, which is a transformer

encoder originally used by GN2X, for both the Siamese part and the information-sharing
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part. The large-𝑅 jets will be represented as fully connected graphs in the transformer,

where each node represents a track. The training process is similar to GN2X, except that

the inputs are bags of subgraphs. The training sessions for this study are conducted on a

cluster equipped with 2 NVIDIA A100 GPUs, requiring approximately 9 hours to com-

plete 50 epochs comprising 1 million jets.

In addition, instead of representing the large-𝑅 jets as fully connected graphs, k-

nearest neighbor graphs are also investigated. In this case, each node still represents a

track, but only the k nearest neighbors of each track are connected to it, where the distance

is defined as the Euclidean distance in the (𝜂, 𝜙) plane. In this study, 𝑘 = 9 is used, which
is the average number of tracks in each subjet.

C.3 Results and Conclusion

The results of this study are shown in Figure C.4 and C.5. The performance of the

base GN2X tagger is also shown for comparison. The results show that the subgraph

method is not so effective for fully-connected graphs. For k-nearest neighbor graphs, the

subgraph methods can improve the performance, compared to the fully-connected graphs.

However, graphs with attention, or so-called transformer encoder architecture, have better

performance than the k-nearest neighbor graphs method. In conclusion, the transformer

is a highly advanced architecture for dealing with the large-𝑅 jets, which contain lots of

subjet or tracks. The transformer itself can learn the complex substructure, even better

than the subgraph methods.
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Figure C.4 The background rejection versus signal efficiency for 𝐻 → 𝑏 ̄𝑏 tagging.
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Figure C.5 The background rejection versus signal efficiency for 𝐻 → 𝑐 ̄𝑐 tagging.
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