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Abstract

Higgs boson was discovered at the Large Hadron Collider (LHC) in 2012 and
many measurements were performed for understanding its properties. The
Higgs mechanism predicts the mass of elementary particles and provides the
source of the electroweak symmetry breaking. The vector boson scattering
with the same leading order term as Feynman diagrams gives an essential way
to test the relation between the Higgs mechanism and electroweak symmetry
breaking. In addition, beyond the standard model physics predicts other
Higgs sectors, denoting another contribution to the vector boson scattering
process.

The semileptonic vector boson scattering process provides more statistics
than the full-leptonic process and fewer QCD backgrounds than the full-
hadronic process. Hence, this thesis aims to improve the sensitivity of the
semileptonic process. There are four quarks in the event, two from the vector
boson decay, the other two from the spectator quarks, which originate from
partonic quarks. The considerable gluons produced due to the QCD effect
are the major backgrounds in this channel.

Machine-learning models to separate quark-induced hadron jets from gluon-
induced ones (q/g tagging) are developed in this thesis. Several kinds of
neural network q/g tagging models are studied and found to have significant
improvement compared to the conventional boosted decision tree machine
learning model. The best neural network q/g tagging model has improved the
background rejection rate by approximately 10% than the boosted decision
tree model. Developed q/g tagging is applied to the semileptonic vector-
boson scattering analysis, and the sensitivity is improved by around 8.2%.
There is still room to improve the sensitivity more in the future analysis,
which is discussed in the last part of this thesis. As a result, the efficiency of
searching signal became better but still have space to develop.
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Chapter 1

Introduction

The ultimate purpose of particle physics is to discover the equation of motion
which is able to describe elementary particles in our universe. Although the
standard model (SM) of elementary particle physics predicts numerous parti-
cle phenomena, there are still several unexplained issues. For instance, dark
energy [1], dark matter [2], Higgs boson mass [3] and strong CP problem [4]
are the mysteries needed to uncover. These new physics beyond SM (BSM)
are believed to exist at the TeV-scale or higher energy region.

The Large Hadron Collider (LHC), which the center-of-mass energy
√
s = 13

TeV, is the largest and highest energy collider in the world. TeV-scale en-
ergy experiment gives us a chance to examine the properties of elementary
particle physics. The ATLAS detector at the LHC is built to investigate
the latest high-energy physics research. The ATLAS [5] and CMS [6] exper-
iments at the LHC made a milestone for the discovery of the Higgs boson
in 2012, which means the SM is finally completed. In order to understand
the beyond SM (BSM) physics, LHC will be upgraded to High Luminosity
LHC (HL-LHC), providing a center-of-mass energy of

√
s = 14 TeV with an

integrated luminosity up to 3000 fb−1.

Vector Boson Scattering (VBS) is a sensitive probe to examine the elec-
troweak symmetry breaking (EWSM) in SM and BSM physics. If the cou-
pling between the vector bosons and Higgs deviate from the SM prediction,
the VBS cross-section increase when the center-of-mass energy rises to the
higher energy scale. Moreover, the cross-section of the VBS process is ex-
pected to increase from new resonances, originating from an extended Higgs
sector predicted from the BSM model [7]. SM examination and BSM in-
vestigation imply the VBS process’s importance, motivating this thesis to
improve the VBS signal searching.
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CHAPTER 1. INTRODUCTION 6

The VBS process decays to two vector bosons (W or Z boson). Both W
and Z bosons have hadronic and leptonic decay channels. W boson decays
into qq and ℓν, hadronically and leptonically, respectively. Z boson decays
hadronically and leptonically to qq and ℓℓ or νν. (νν is not considered in
full-leptonic decay since the analysis strategy is different from ℓℓ.) The full-
leptonic decay has the most significant signal-to-background ratio compared
to other processes. The full-leptonic channel was observed during Run I
at the LHC and confirmed by Run II. Besides the full-leptonic VBS pro-
cess, full-hadronic and semileptonic are also measured by the ATLAS [8] and
CMS collaborations [9]. The full-leptonic VBS process has a severe statis-
tical problem because of the low branch ratio of leptonic decays in vector
bosons. The full-hadronic VBS process research is highly affected by quan-
tum chromodynamics (QCD), causing a large amount of background. Hence,
this thesis focuses on the semileptonic decay process.

Since the gluons generated from the QCD are the primary background par-
ticles in the semileptonic VBS process, it is essential to develop a tool to
separate the quarks and gluons, which is known as quark/gluon tagging (q/g
tagging). The q/g tagging has been developed for a while since gluons usu-
ally represent an annoying background source. Furthermore, neural network
models have played a pivotal role in machine learning in the last decades.
Compared to conventional machine learning such as BDT, neural network
models are able to make use of more low-level information, providing a way
to avoid information loss. This thesis discusses several neural networks q/g
tagging models and examines the improvement. The validation of q/g tag-
ging models considered in this thesis is taken by the 1-lepton semileptonic
VBS process for convenience.

This thesis consists of five chapters: Chapter 2 introduces some brief parti-
cle physics theory and the background knowledge for this study. The inner
detector, calorimeters and some functions in the ATLAS are demonstrated
in Chapter 3. The discussion of quark/gluon tagging models and their per-
formance is shown in Chapter 4. Chapter 5 describes the definitions of the
physics objects of the 1-lepton semileptonic VBS process. Then, the appli-
cation and improvement of q/g tagging are examined by applying the q/g
tagging models to the 1-lepton semileptonic VBS process. Chapter 6 gives a
breif conclusion of entire thesis.



Chapter 2

Background Knowledge

Chapter 2 gives a brief introduction to the semileptonic VBS analysis. Sec-
tion 2.1 describes the SM of elementary particle physics. Section 2.2 shows
the importance of weak vector boson scattering and the mechanism of the
process. Since jet phenomenology takes a vital role in the VBS scattering
and the q/g tagging study in this thesis is also making use of jets, the intro-
ductions to the jet structure are explained in Section 2.3.

2.1 The Standard Model of particle physics

The success of the Standard Model in explaining the matter interactions
governed by three fundamental forces is astounding. There are mainly three
parts: the gauge interaction, the fermion fields, and the Higgs mechanism.
In Section 2.1.1, the introduction of the gauge interaction is given to explain
the interaction between fermion and gauge particles. The fermion fields due
to the matters themselves are described in Section 2.1.2. Section 2.1.3 intro-
duces the Higgs mechanism used to demonstrate the masses of the elementary
particle due to the EWSB.

2.1.1 Gauge Interaction

One of the most remarkable insights in particle physics is that interactions
are governed by the symmetry principle. The gauge interaction is one of
symmetry mechanism and the gauge transformation is shown in Equation
2.1.

ψ(x) → ψ′(x) = Û(x)ψ(x) = eiqχ(x)ψ(x), (2.1)

where ψ is a complex field and qχ(x) here can be seen as a gauge param-
eter. The phase qχ(x) varies at all points in space-time. Other than U (1)

7



CHAPTER 2. BACKGROUND KNOWLEDGE 8

transformation, there are also SU (2) transformation dictating electroweak
interaction and SU (3) transformation which describes strong force in the
gauge transformation.
Using U (1), SU (2) and SU (3) symmetry, the SM Lagrangian density is
derivated as following equation,

L = −1

4
(Fa

µν)
2 + ψ̄(iγµDµψ) + yijψ̄iψjϕ+ h.c.+ |Dµϕ|2 + µ2ϕ†ϕ− λ(ϕ†ϕ)2,

(2.2)
where Fa

µν = ∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν and Dµ = ∂µ − igAa

µt
a
r for gauge field

A, fermion field ψ, scalar field ϕ, Yukawa coupling yij, Higgs self-coupling λ,
representation matrices tar , gauge coupling g, structure constant fabc, matrix
representation of the Clifford algebra γµ and h.c. stands for Hermitian con-
jugate.
Investigating SM Lagrangian closer, fermions do not suppose to have masses
in nature in Equation 2.2. However, physicists have measured the mass
term for fermion particles, which is considered from fundamental symmetry
broken. The Higgs mechanism explains the origin of masses for elementary
particles by the EWSB.

2.1.2 Elementary Particle

The electron, the electron neutrino, the up quark and the down quark are
known as the first generation particles. As higher energy goes in the high-
energy collider, further complexity of elementary particles other than the first
generation is discovered. Second generation and third generation particles
have the same properties as first generation particles except for their masses.
Besides, the gauge boson particles are also found at high-energy collision ex-
periments. The gauge boson is regarded as the origin of three fundamental
forces. With the discovery of the Higgs boson at LHC, all of the elementary
particles predicted by the SM have now been observed.
The properties of all elementary particles are summarized in Table 2.1. The
fermion particles such as leptons, neutrinos and quarks are dictated by the
Fermi-Dirac statistics, indicating the proportional relation between their
masses and Yukawa couplings. There are four kinds of gauge boson parti-
cles which are spin-1 particles and are described by Bose-Einstein statistics.
The couplings of electroweak force are demonstrated by photon γ and W±/Z
boson whose masses are approximately 80/91 GeV. On the other hand, the
gauge boson for strong force is massless gluon g and it has eight color mul-
tiplets. The Higgs particle is also a boson particle but with spin-0.
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Table 2.1: The essential quantum number of the elementary particles in the
SM. J and Q stand for the spin and the electric charge.

Particle J Q

e,µ, τ 1/2 -1
νe, νµ, ντ 1/2 0
u,c,t 1/2 2/3
d,s,b 1/2 -1/3
γ 1 0

W± 1 ±1
Z 1 0
g 1 0
h 0 0

2.1.3 Higgs Potential and Electronweak Symmetry

The Higgs mechanism represents an integral sector of the SM. Without the
Higgs boson, the W+W− → W+W− scattering will violate unitarity at a
center-of-mass energy of TeV scale. The unitarity violation comes from
WLWL → WLWL scattering, where WL indicates W boson is polarized lon-
gitudinally. As a result, the violation can be associated with the massive
W bosons originating from the Higgs mechanism. The unitarity violation
in WW scattering cancels out if the exchange of a scalar boson is included.
This scalar boson is the Higgs boson which can solve the violation issue, as
shown in Figure 2.1.
Consider a complex scalar field Equation as 2.3,

ϕ =
1√
2
(ϕ1 + iϕ2), (2.3)

which the Lagrangian can be written as following,

L = (∂µϕ)
∗(∂µϕ)− V(ϕ) with V(ϕ) = µ2(ϕ∗ϕ) + λ(ϕ∗ϕ)2, (2.4)

then substituting the Equation 2.3 into the Equation 2.4,

L =
1

2
(∂µϕ1)(∂

µϕ1) +
1

2
(∂µϕ2)(∂

µϕ2)−
1

2
µ2(ϕ2

1 + ϕ2
2)−

1

4
λ(ϕ2

1 + ϕ2
2)

2. (2.5)

For the convex shape potential to have a finite minimum, λmust be a positive
number. Because of global U (1) symmetry, Equation 2.4 is invariant after
ϕ → ϕ

′
= eiαϕ transformation. The ground state occurs when µ2 <0 is

known as EWSB. Then, the potential can be defined by

ϕ2
1 + ϕ2

2 =
−µ2

λ
= v2, (2.6)
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where the v in Equation 2.6 is called vacuum expectation value. Conse-
quently, W±/Z stands for three of degrees of freedom (The mixture of the
SU (2)×U (1)). The remaining one degree for Higgs potential is Higgs boson.

Figure 2.1: The mass of W boson originating from Higgs boson makes the
local gauge invariance conserved in SM model.

2.2 Weak Vector Boson Scattering

The EWSB and Higgs boson properties are often examined by the VBS
processes since the leading order Feynman diagrams are only related to elec-
troweak bosons or Higgs bosons. VBS processes are also considered as a
window to discover the portent of the BSM. For instance, BSM predicts that
there are heavy particles that may modify the dynamics of electroweak in-
teractions, which results in the increment of cross sections [10]. It can be
measured in the VBS process. The Feynman diagram of VBS is shown in
Figure 2.2. The details of the VBS decaying process will be discussed in
Section 2.2.1.

2.2.1 VBS Processes

VBS processes consist of the Z bosons or W bosons scattering. The total
channels there are W±W±,W±W∓,W±Z and ZZ. The W±W∓ scattering
has a dominant contribution compared to the W±W± scattering process and
VZ process, where V represents the vector boson.
W boson decays into mainly lν and qq. On the other hand, Z boson also has
dominant qq decay which is approximately 70% and less chance decay to νν
and ℓℓ. The branching fractions for the W and Z bosons are given in Table
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Figure 2.2: Two vector bosons are produced due to the proton-proton colli-
sion and then scattering each other.

2.2. Both Z and W bosons have leptonic and hadronic processes, implying
full-leptonic, semileptonic and full-hadronic decay in the VBS final channel.
ZZ → 4ν final state is counted as full-invisible because neutrinos are invisible
in the ATLAS detector. The decay branching ratio is shown at Table 2.3.

Table 2.2: The branching fractions of the W boson and Z boson are on the
left hand and right hand sides. Values are obtained from Reference [11].

Particle Decay Branching Ratio

W −→

qq 67.41±0.27%
eν 10.71±0.16%
µν 10.63±0.15%
τν 11.38±0.21%

Particle Decay Branching Ratio
qq 69.91±0.056%
ee 3.363±0.004%

Z −→ µµ 3.366±0.007%
ττ 3.370±0.008%
νν 20±0.055%

Table 2.3 indicates that full-hadronic channel has a dominant ratio over-
all final states. However, since there is an extensive QCD background in
full-hadronic final states, estimating the cross sections in this background is
harsh. Although the full-leptonic final states have the cleanest background
to analyze, the limited branching ratio is fatal for the statistics. The sec-
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Table 2.3: The branching ratio of final state for each VBS process. The full-
hadronic represents WW/WZ/ZZ → 4q. The full-leptonic stands for WW →
ℓνℓν, WZ → ℓνℓℓ and ZZ → ℓℓℓℓ/ℓℓνν, where ℓ is leptons e and µ, and ν
represents three kinds of neutrino (νe, νµ and ντ ). The including τs means
there is one or more τs in final states. The semileptonic represents WW →
ℓνqq, WZ → ℓνqq/ℓℓqq, and ZZ → ℓℓqq/ννqq. This is because the analysis
strategies of τs are different from the electrons and muons. The full-invisible
consists of ZZ → 4ν.

VBS Process Final States Branching Ratio

WW

full-hadronic 45.7%
full-leptonic 4.7%
including τs 20.4%
semileptonic 29.2%

WZ

full-hadronic 47.3%
full-leptonic 5.8%
including τs 13.8%
semileptonic 33.2%
full-hadronic 48.9%
full-leptonic 3.1%

ZZ including τs 6.6%
semileptonic 37.4%
full-invisible 4.0%
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ond largest branching ratio goes to the semileptonic final state. Hence, the
semileptonic VBS final state is a suitable process to investigate and worth-
while to improve.
In the semileptonic VBS final state, there are four quarks in the event, de-
tected as four jets in the ATLAS. The background mainly comes from V+jets
events, and approximately half of the selected jets are gluons. The VBS pro-
cesses are studied with the luminosity of 36fb−1 in Reference [12] in the
ATLAS. The VBS processes is measured to have observed (expected) signif-
icance of 2.7 (2.5) standard deviations.

2.3 Jet Struture

Semileptonic final states has 0-lepton, 1-lepton and 2-lepton types of final
states, which are qqVZ → qqqqνν, qqVW → qqqqℓν and qqVZ → qqqqℓℓ.
There are four quarks in each type of final state. The quarks and gluons
are observed as jets in the ATLAS detector, reconstructed as two kinds of
jets, respectively. One is Small-R Jet, another is Large-R Jet, where Small-
R Jet primarily for quarks/gluons and Large-R Jet mostly for larger mass
particles such as W/Z/top. The neural network tagger for q/g tagging used
in this study takes Small-R Jet as the target. This section will give some
brief introductions to the jet structure. The reconstruction of the jet will
be described in Section 2.3.1. Since this study focuses on q/g tagging, the
quark and gluon jets are demonstrated in Section 2.3.2. The jet discriminant
is introduced in Section 2.3.3.

2.3.1 Reconstruction for Jet

There are several stages to reconstruct a jet: first defining the four-vectors of
jet, and then defining jet algorithm and parameters, and finally either small-
R jets or large-R jets will be reconstructed. First of all, the four-vectors is
defined as the summation of all particles in the jet, shown in the Equation
2.7.

pJ =
∑

pi = (
∑
i

Ei,
∑
i

−→p i), mJ =

√
(
∑
i

Ei)2 − (
∑
i

−→p i)2, (2.7)

where Ei and
−→p i represent the energy and momentum of i-th particle in

jet. ATLAS primarily uses inner detector and topo-cluster to reconstruct
the four-vectors of each jet, which the details will be given in Section 3.2 and
3.3.
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The anti-kt algorithm [13] with topo-cluster inputs is utilized for jet recon-
struction at the ATLAS. Depending on the approaches of physics research,
there are two types of jets often used, one is small-R (R=0.4) EM jets, the
other one is large-R (R=1.0) LCM jets [14], where EM and LCW represent
calibrated at either the electromagnetic (EM) scale or local cell weighting
(LCW) scale. The jet consists of a group of particles forming a narrow cone
of hadrons produced by the hadronization of quarks or gluons. Using the

Figure 2.3: The simple illustration of the anti-kt algorithm. Using the Equa-
tion 2.8 to accumulate the close particles to form the jet until the distance
between the selected jet and other particles is far enough.

anti-kt algorithm is the first step to differentiate a small-R jet from a large-R
jet. Defining a distance named dij and calculating the distance of every two
particles to find the minimum of d, seen in Equation 2.8.

d = min(p−1
T,i, p

−1
T,j)

∆2
i,j

R2
, (2.8)

where ∆2
i,j = (yi − yj)

2 + (ϕi − ϕj)
2, and pT,i stands for the transverse mo-

mentum of i-th particle, and yi and ϕi are the rapidity and azimuth of particle
i. Radius parameter R is a parameter of choosing small-R jet (R=0.4). Fig-
ure 2.3 gives a brief image for the anti-kt algorithm. The jets reconstructed
by the anti-kt algorithm are needed to be calibrated due to some effects, such
as pile-up, data/MC diffs and non-compensation calorimeter response [15].
The steps of anti-kt are shown as follows. In the first step, all reconstructed
particles list is defined. Then, calculate the minimum of the dij combination
over the list. Third, if dij < djB, then the i and j particles will be removed
and the new particle pnew = pi + pj will be added. In this step, if dij > djB,
then the i particle will be considered as a jet. Repeat the step 1 to 3 until
no particles are left. Finally, the jets can be defined from the reconstructed
particles.
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2.3.2 Quark Jet and Gluon Jet

Both quarks and gluons will be hadronized to a group of hadronic particles
because of the QCD confinement, which only allows the colorless states. This
group of particles is observed as a narrow cone and defined as a jet in the
ATLAS. The key difference between a quark and gluon jets originates from
their carrying color. Quark contains only one QCD color while gluon carries
both color and anti-color. According to Altarelli-Parisi splitting functions
[16], gluon radiation from a gluon has a factor of CA = NC = 3, and gluon

radiation from a quark has a factor of CF =
N2

C−1

2NC
= 4

3
, where the ratio equates

CA/CF = 9/4 = 2.25. Hence, gluon jets tend to have more constituents than
quark jets, causing gluon jets to have a broader radiation pattern than quark
jets. ATLAS has developed a tagger based on ntrack, trackwidth, trackC1
and also other variables to separate quark jets and gluon jets with these
properties. Since there are more particles in gluon jets on average, ntrack,
trackwidth and trackC1 are also larger than quark jets, shown in Figure 2.4
and 2.5. The quark and gluon jets are defined by the labels generated in
the Monte-Carlo Sample (MC sample). The d, u, s and g labels are used in
Figure 2.4 and 2.5.

2.3.3 Jet Discriminant

There are several types of jet discriminant variables. Some of them are useful
to have a jets identification. Some are usually utilized to remove pile-up jets.
A representative variables are the number of tracks (ntrack), trackwidth and
trackC1 widely used for q/g tagging at the LHC analysis. This thesis also uses
these three variables to identify quark and gluon. The ATLAS experiment
measures the tracks with an inner detector (ID), including silicon micro-
strips, and a transition radiation tracking detector in a 2 T axial field which
is generated by a solenoid magnet [5]. More details will be introduced in
Section 3.2. For the limitation of the inner detector, tracks are reconstructed
at pseudorapidity of |η| < 2.5 and the transverse momentum pT > 500
MeV. Both the distance from the primary vertex and the longitudinal length
are required to be smaller than 1.5 mm. And at least 6 SCT hits are also
needed. After the criterion above, the anti-kT algorithm will select the tracks
associated with the jet. ntrack means the number of tracks associated with
the jet observed by the inner detector. The distribution of ntrack varies with
pT and different particles, and ntrack also increases at higher pT, shown in
Figure 2.4.
Trackwidth is also found to be a useful variable for identifying the origin of
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a jet, and the definition is seen as Equation 2.9.

trackwidth =

∑
i(p

trk
T,i ×∆R(trki, Jet))∑

i p
trk
T,i

, (2.9)

where ∆R(x, y) =
√

(ηx − ηy)2 + (ϕx − ϕy)2, and ptrk
T,i is the transverse mo-

mentum of i-th tracks in the selected jet.
TrackC1, is called ”track-based-energy-correlation angularity”, and shows
the energy correlation among the tracks that are associated with the jet,
shown in Equation 2.10.

trackC1 =

∑
i

∑
j(p

trk
T,ip

trk
T,j ×∆Rβ(trki, trkj))

(
∑

i p
trk
T,i)

2
. (2.10)

The indexes run over all the tracks in the jet with j > i, and the parameter
β is tunable. β = 0.2 is utilized in this thesis.
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Figure 2.4: The distribution of ntrack. The solid line stands for quark jets
and the dotted line stands for gluon jets. Different colors indicate different
pT regions. As transverse momentum pT goes to higher, ntrack also becomes
larger. Jets are required within the tracking acceptance which |η| < 2.1 and
pT > 500 MeV.

Figure 2.5 shows the distribution of trackwidth and trackC1. Trackwidth
and trackC1 are also important discriminating variables. These three vari-
ables are also utilized in Boosted Decision Trees (BDT), a machine learning
tool usually implemented in the LHC analysis for q/g tagging. This study
makes use of ntrack, trackC1, trackwidth for q/g tagging in Chapter 4.
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Figure 2.5: The distribution of trackwidth (left) and trackC1 (right) for gluon
and quark at 1200 < pT < 1500 GeV. The distribution for gluon is slightly
larger than the distribution for quark in general because of the difference of
color factor, and more details are described in Section 2.3.3. Jets are required
within the tracking acceptance which |η| < 2.1 and pT > 500 MeV.

Apart from jet identification for different particles, pile-up jets from addi-
tional proton-proton interactions at the LHC gives a crucial issue for numer-
ous physics analysis. To identify the jets colliding correctly against pile-up
jets, jet-vertex-tagger (JVT) is a type of discriminaxnt to clean the pile-up
jet constructed from RpT and corrJVF (correlated jet-vertex-fraction [17]).
The JVT discriminant is based on a k-nearest neighbor (kNN) algorithm [18]
by the MC simulations. The definition of RpT and corrJVF used in the JVT
is described as follows.

RpT =

∑
k p

track
T,k (PV0)

pjet
T

, (2.11)

corrJVF =

∑
m ptrack

T,m (PV0)∑
l p

track
T,l (PV0) +

∑
n≥1

∑
l p

track
T,l (PVn)

k·nPU
track

, (2.12)

where PV0 here means the hard-scatter vertex and PVn stands for primary
vertices originating from pile-up interactions and PVn is pileup vertices. k is
a constant parameter and nPU

track represents the pileup tracks number in the
event.
It is shown that using track and vertex information with JVT variables can
remove pile-up jets effectively. According to reference [19], jets with pT < 50
GeV and |η| < 2.4 required at the medium JVT working point accepts 92%
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of hard-scatter jets and rejects 98% of pile-up jets.
In summary, this thesis uses the ntrack, trackwidth and trackC1 as the inputs
for the q/g tagger in both BDT and neural network models. On the other
hand, in order to reduce the pile-up jets, all jets generated by the Monte
Carlo method passed the medium JVT working point in this study.



Chapter 3

The ATLAS Experiment at the
LHC

The Large Hadron Collider, the highest energy and most powerful particle
accelerator, was built 100 m underground of CERN in Geneva. LHC collides
proton to proton at center-of-mass equating to 13 TeV.
There are several purpose detectors in the LHC, which are ATLAS (A Toroidal
LHC Apparatus), Compact Muon Solenoid (CMS), ALICE (A Large Ion
Collider Experiment) and The Large Hadron Collider beauty (LHCb) exper-
iments. ALICE specializes in heavy-ion physics and is designed to investigate
strong interaction matter physics. LHCb is dedicated to studying the differ-
ence between matter and antimatter by investigating the b quark. ATLAS
and CMS have similar scientific goals to study a wide range of physics but
have different magnet-system designs and calorimeter material. The ATLAS
detector [5] is the largest detector and is now used to find new physics beyond
the SM.
This thesis focuses on the ATLAS and a brief introduction of the ATLAS
detector is introduced in Section 3.1. The inner detector (ID) and Calorime-
ters used to detect the particles are described in Section 3.2 and 3.3. The
track and topological cluster used for physics object reconstruction will be
introduced in Section 3.4.

3.1 Overview of the ATLAS Detector

The ATLAS detector consists of several sub-detectors (inner tracker, calorime-
ter, muon spectrometer) built for various physics analysis at the TeV scale.
The overall layout is shown in Figure 3.1. The inner detector’s 2 T solenoidal
field originates from four large superconducting magnets. The diameter and

19
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Figure 3.1: The schematic illustration for the ATLAS detector is taken from
[5]. The detector is constructed in toroidal shape with 25 m in height and
length in 44 m. The detector consists of an inner detector, solenoid magnet,
calorimeters and muon spectrometer.

length of each magnet are approximately 2.56 m and 5.6 m, respectively. The
magnet system provides a 2 T magnetic field in the detector.
The coordinate of the ATLAS detector is described as follows. The x-y plane
is perpendicular to the beam direction while the z-axis goes to the collision
direction.
There are several variables usually used in the LHC.

• Transverse particle momentum : pT =
√

p2
x + p2

y.

• Azimuthal angle : ϕ = arctan py/px, where is usually used for x-y plane.

• Polar angle : θ = arctan pz/px.

• Pseudorapidity : η = − ln tan θ/2, which describes the angle between
the particle momentum and the beam axis.
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3.2 Inner Dector

Inner Detector consists of three subsystems, designed to have significant mo-
mentum resolution and measure primary and secondary vertex for charged
tracks above around 0.5 GeV with |η| < 2.5. A schematic overview of the
inner detector is shown in Figure 3.2. For against the high radiation envi-
ronment, enormous strategies are designed such as the material of the sensor
and the temperature in the system. The inner detector provides the momen-
tum of charged particles by calculating the curvature of the trajectory. It
also identifies particle charge since opposite charged particles have opposite
curves in the magnetic field. High resolution silicon pixel detector will be
demonstrated in Section 3.2.1. Semiconductor Tracker (SCT) used a classic
single-sided p-in-n technology as described in Section 3.2.2. Transition Ra-
diation Tracker (TRT) consisting of polyimide straw tubes is introduced in
Section 3.2.3.

3.2.1 Pixel Detector

Pixel detector is built at the most inside part of the inner detector. There-
fore, pixels are designed with two dimension sensors with high resolution.
There are nearly 400 thermistors installed within the pixel detector, utilized
to make sure the cooling loops system works appropriately. The sensors are
made of radiation-tolerant humidity sensors to reduce the effect of high radi-
ation environment and moisture. Four barrel layers and three double-sided
end-caps layers cover |η| < 2.5 by 1736 and 288 pixel sensors, respectively.
The most inside one barrel layer named insertable b-layer (IBL) was installed
in 2014. Preventing the leakage current, the entire system is operated at the
temperature ∼ −10◦C. The sizes of each pixel are 50 × 250 µm2 and 50 ×
400 µm2. The readout fibers have been improved recently to handle the data
from high luminosity in the future upgrade. The pixel sensor uses oxygenated
n-type wafers with readout on the n+-implanted side of the detector. The n+

implanted side allows the detector has the powerful charge-collection ability.
The oxygenated materials provide good radiation tolerance while detecting
the tracks of hadrons. These properties make the pixel detector have signif-
icant resolution and high granularity and good tolerance for the beginning
area of detecting the charged particles.

3.2.2 Semiconductor Tracker

Semiconductor Tracker (SCT) detector is located at 30-50 cm from the beam.
SCT is made of one dimension sensors named silicon microstrips. Two types
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Figure 3.2: The illustration of inner detector taken from [20]. The radius
of the detector is approximately 1 m. Pixel layer is placed at R = 33.5 -
122.5 mm, SCT is built at R = 299 - 514 mm, and TRT is located at R
= 554 - 1082 mm. All of them consist of barrel layers and end-cap layers.
The barrel layers cover at lower pseudorapidity while the end-cap extends to
higher pseudorapidity.
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of sensors are made for the SCT detector. The barrel sensor has 80 µm
strips with two 6 cm long sensors. The end-cap sensors are designed with
radial strips with a mean pitch of around 80 µm. Thermal pyrolytic graphite
technology [21] is applied to give a high thermal conductivity between the
sensors and cooling system. There are four sensors in each barrel layer, two
on the top and two on the bottom sides. There are only two sensors in each
end-cap layer, each sensor on the top and bottom sides. The top and bottom
sides of the SCT sensors are rotated with a ±20 mrad angle, allowing the
strip-type sensors to measure the two-dimensional space observation. The
heat is cooled down by evaporating C3F8 at around -25 ◦C, where cooling
pipes are attached to each module.

3.2.3 Transition Radiation Tracker

The Transition Radiation Tracker is placed at the most outer part of the in-
ner detector at 56.3 – 106.6 cm from the beamline. TRT detector uses tubes
filled with a gas mixture of 70% Xe, 27% CO2 and 3% O2 with roughly 10
mbar pressure. Different from the pixel and SCT detector, the TRT can mea-
sure the 1-dimensional space points for each tube. In order to avoid pollution
from permeation, the tubes are enveloped with CO2 gas. TRT tube has a
concentric circle shape, where the gold wire is surrounded by the tubes. The
gold wire inside and tube layer outside are anode and cathode, respectively.
The voltage is operated at -1530 V toward the inside gold wire, giving the
maximum electron collection time can be down to 48 ns. Due to the emission
electron drift-time, TRT space resolution is around 130 µm.
When the charged particle passes the TRT tubes, it ionizes the gas compa-
nying with the radiated photons. The radiated photons interact with the
gas molecules, producing more electrons moving toward the gold wire and
generating the electronic signal.
All charged particles with pT > 0.5 GeV and |η| < 2.0 will go through at least
36 straws, which can be used to reconstruct the trajectory of their tracks and
transverse momentum.
The TRT detector can also distinguish different sorts of charged particles at
an early stage. When a pion (electron) transverse the tubes, it radiates fewer
(more) photons that bring fewer (more) electrons. These properties allow the
device to separate charged particles by the magnitude of the electronic sig-
nal.
The TRT contains 73 layers of straws for a barrel module and 160 straws
planes for an end-cap module. The barrel TRT is separated into three rings,
each consisting of 32 modules. The TRT end-caps are made of two sets of
straw wheels. One contains 12 wheels while the other one contains eight
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Figure 3.3: The schematic figure for the ATLAS calorimeter is taken from [5].
The calorimeter consists of LAr forward (FCal), LAr electromagnetic barrels,
LAr electromagnetic end-cap (EMEC), LAr hadronic end-cap (HEC), Tile
barrel and Tile extended barrel. Each system contains several layers which
can determine the energy for particles.

wheels.

3.3 Calorimeters

Calorimeter systems stop the particles with electromagnetic and hadronic
interaction to measure the energy. Therefore, it is located outside the inner
detector. ATLAS calorimeter contains several regions, shown in Figure 3.3,
and contains mainly electromagnetic and hadronic systems. Electromagnetic
calorimeter samples the energy of photons and electrons with electromagnetic
interaction. On the other hand, hadronic calorimeters measure the energy of
hadronic particles such as protons and mesons by hadronic interaction. Com-
bined with the Inner Detector and Muon Chamber [5], ATLAS detector can
identify considerable different particles, as seen in Figure 3.4. Section 3.3.1
describes an Electromagnetic Calorimeter that mainly interacts with elec-
trons and photons. Section 3.3.2 shows Hadronic Calorimeter which allows
ATLAS detector to discriminate the hadrons from other particles.
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Figure 3.4: The particle identification schematic illustration is taken from
[22]. Photons only interact with the matters at electromagnetic calorimeter.
Electrons leave the tracks at the inner detector and stop at the electromag-
netic calorimeter. Muons go through the tracking system and both calorime-
ters to the muon system. Charged hadrons are stopped at the hadronic
calorimeter. Neural hadrons don’t have tracks but also stop at the hadronic
calorimeter. These properties allow the ATLAS detector to distinguish dif-
ferent sorts of particles.



CHAPTER 3. THE ATLAS EXPERIMENT AT THE LHC 26

3.3.1 Electromagnetic Calorimeter

Lead and Liquid Argon (LAr) are the main materials for the electromagnetic
calorimeter. It is used to detect the particles having electromagnetic interac-
tion such as electrons and photons. The electromagnetic calorimeter consists
of barrel and end-caps ones which cover |η| < 1.4 and 1.4 < |η| < 3.2, re-
spectively.
Two half-barrels constitute the barrel electromagnetic calorimeter and sur-
round the beamline to cover the entire azimuthal angle ϕ. The thickness of
a module varies from 22 to 30 radiation lengths (X0) between |η| = 0 and
|η| = 0.8, and increases from 24 X0 to 33 X0 between |η| = 0.8 and |η| = 1.3
[5]. The end-cap calorimeters are made of two wheels used to measure the
energy of particles in the area 1.375 < |η| < 3.2. The end-cap calorimeter
has thickness of 24 to 38 X0 between 1.457 < |η| < 2.5, and 26 to 36 X0

between 2.5 < |η| < 3.2. Therefore, the electromagnetic calorimeters cover a
larger area than the inner detector at |η| > 2.5 region. The LAr calorimeter
surrounding the inner detector stops the particles and converts them into an
electromagnetic shower which contains a set of lower energy particles. The
shower particles ionize lead and liquid argon layers and produce an electronic
signal. It is designed as an accordion geometry in order to cover all ϕ re-
gions without time dependence. LAr calorimeter is set at -184◦C to keep the
argon in liquid form. The electronmagnetic calorimeter energy resolution is
σ(E[GeV])
E[GeV]

≈ 10∼17%√
E[GeV]

⊕ 0.7%.

3.3.2 Hadronic Calorimeter

The hadronic calorimeter is built outside the electromagnetic calorimeter. It
is subdivided into three types of calorimeters: one is Tile calorimeter, an-
other one is LAr hadronic end-cap calorimeter (HEC) and the other is LAr
Forward Calorimeter (FCal).
Since hadrons are predicted to go further at the calorimeter layers, hadronic
calorimeters are located outside of electromagnetic ones. The hadrons pass
through the electromagnetic calorimeters lose some energy and completely
stop at the hadronic calorimeter.
When particles hit the steel layers, they are also converted to lower energy
shower particles. The plastic scintillators generate photons and the photo-
multiplier tubes (PMT) amplify the electronic signal which will be sent to
the readout system.

• Tile Calorimeter
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The tile calorimeter is placed at |η| < 1.0 region, with two 0.8 < |η| <
1.7 extended barrels. It uses scintillating tiles as an active material and
steel as an absorber. The three-layer barrel has approximately 1.5, 4.1
and 1.8 interaction lengths. On the other hand, the extended barrel
has 1.5, 2.6 and 3.3 interaction lengths, respectively.

• LAr Hadronic End-Cap calorimeter
There are two wheels in the HEC, placed behind the end-cap electro-
magnetic calorimeter out to |η| = 3.2. The wheels of the HEC are
made of copper plates to absorb the hadronic particles. The HEC has
approximately 11 interaction lengths for overall thickness.

• LAr Forward Calorimeter
The FCal is located at around 4.7 m from the interaction point. The
tungsten is an absorber material while LAr is an active medium for
hadronic interaction. And copper and LAr are used as absorbers and
active materials for electromagnetic interaction. The FCal has roughly
10 interaction lengths.

The haronic jets energy resolution in the HEC and tile calorimeter is σ(E[GeV])
E[GeV]

≈ 50%√
E[GeV]

⊕ 3%.

The FCal energy resolution is estimated as σ(E[GeV])
E[GeV]

≈ 100%√
E[GeV]

⊕ 10%.

3.4 Reconstruction

Track and topo-cluster play a vital role for the physics objects (such as elec-
trons, muons and jets) reconstructions in the early step at the ATLAS. This
section shows how the ATLAS reconstructs the track and cluster. Section
3.4.1 gives a brief introduction of tracks and vertices in the ATLAS. Section
3.4.2 describes the topological-clusters system.

3.4.1 Tracks and Vertices

The track and vertex reconstruction algorithms in the ALTAS have proven
significant in considerable studies. The Inner Detectors (ID) introduced in
Section 3.2 gives the data of hits from particles in a three-dimensional posi-
tion. These multi-hits in the ID can be reconstructed into tracks for charged
particles. First, the seed track starts from the inside layers of the pixel de-
tector to the SCT detector and extends to the TRT detector. Then Kalman
Filter [23] provides an excellent estimate for early measurements. The al-
gorithm calculates the energy loss in the ID for an ionization particle and
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bremsstrahlung by the track parameter. Secondly, a track search is taken
from segments in TRT and reconstructs the trajectory with the pixel and
SCT hits. On the other hand, the tracks with TRT segments but with-
out silicon detectors are counted as TRT-standalone tracks. According to
[12], track reconstruction efficiencies are shown as follow, 82% ∼ 94% at
0.006 < ∆R(jet, track) < 0.01 for light flavor jets.
For the reasons such as pile-up and proton-proton collisions, the ALTAS ex-
periment is in the harch environment to distinguish the signal from a large
amount of background. A vertex reconstructed from tracks with pT > 400
MeV is utilized for finding the signal. Vertex Finding algorithm [24] is used
to identify the vertex position for tracks. After all, vertices are reconstructed,
the highest

∑
p2
T vertex is defined as a primary vertex. The details of finding

primary vertex are written in [25]. The hard-scatter jets satisfy that an MC
sample truth-particle jet with pT > 10 GeV and is found within ∆R < 0.3.
Tracks are necessary for jets reconstruction. Jet consists of several hadrons
which leave numerous tracks. The tracks in the associated jet are utilized
to reconstruct its four-vector. The variables for discriminating described in
Section 2.3.2 (ntrack, trackwidth and trackC1) are also calculated from the
four-vector of tracks.
The tracks of jets in the ATLAS are reconstructed from the hits in the inner
detectors. The azimuthal range and pseudorapidity of jet tracks are selected
in the range of 0 < ϕ < 2π and |η| < 2.5. Tight quality criteria [26] is
applied to reduce the effect from pile-up background and reject fake tracks
from the noise or charged particles. The following describes several addi-
tional cuts for the jets in this thesis. Each track in the associated jet satisfies
pT > 0.5 GeV and comes from the hard-scatter primary vertex. Track-to-
vertex matching is implemented to define the primary vertices by the vertex
reconstruction. Track excluded in vertex reconstruction are implanted the
nearest vertex strategy with the distance |∆z× sin θ| < 3 mm, where ∆z rep-
resents the longitude distance between the object and defined vertex. This
study requires |η| < 2.1 for jets in order to obtain full tracker acceptance
in the ID. Jet pT > 25 GeV is also required for reducing the soft emission.
The working point of JVT is set at Medium working point [19] and energy
calibration [27] is applied.

3.4.2 Topological-Clusters

A topological-cluster (topo-cluster) is to assemble a group of particles into
clusters from the electromagnetic and hadron calorimeter measurement. The
topo-cluster is usually exploited for reconstructing jets from calorimeter cells.
The reconstruction of the topo-cluster is shown as follows. The seed finding
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in the first step is searching the calorimeter cells with EEM
cell /σ

EM
noise,cell > 4.

Here EEM
cell represents energy corrected by EM-scale (The scales for e γ in the

ATLAS electromagnetic calorimeters). The reconstructed seeds are collected
as a proto-cluster from the primary vertex. Secondly, the adjacent cells in the
given region overlapping in the (η, ϕ) with EEM

cell /σ
EM
noise,cell > 2 are added to the

proto-cluster. Finally, the EEM
cell /σ

EM
noise,cell > 0 cells nearby each proto-cluster

will be merged to one cluster.



Chapter 4

Quark/Gluon Tagging

Quark/Gluon tagging is necessary for many physics analysis in high-energy
physics. Especially, the LHC experiment with proton and proton collision
causes the immense QCD effect. The QCD interaction generates many back-
ground gluons, which are seen as jets in the ATLAS detector. Therefore, the
separation of quark and gluon helps physicists discriminate the signal from
the background. This chapter introduces several kinds of q/g tagging models
and compares their performances. Section 4.1 shows the MC sample used
when the q/g tagging models are trained. Section 4.2 gives the details of each
q/g tagging model, including conventional BDT model and neural network
models. Section 4.3 describes the performance of the models and compares
their pT and η dependence, respectively, and introduces the training and
testing results by the different MC generators.

4.1 MC sample

The dijet process@leading order (multijet) MC samples have been used to
train the q/g tagging models. The jets are evolved with Pythia 8. The
pileup and noise are also considered in order to approach the real data. The
generator Pythia 8 [28] utilizes the NNPDF2.3 PDF set [29], the A14 tune
[30], and run all simulation in the ATLAS detector. For generating heavy
flavor decays, Pythia 8 is interfaced with EvtGent v1.2.0.
The quark and gluon jets are defined by the labels generated in the MC
sample. There are three kinds of labels (d, u, s) and one label (g) for quark
and gluon jets, respectively.
To have better learning for the q/g tagging model, other steps are taken.
The pT of quark jet and gluon jets is flatted to the same distribution and

30
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Figure 4.1: The pT of quark and gluon jet in multijet MC sample is flatted
to one in order not to affect by pT bias.

normalized to one to make sure models are not affected by pT bias, shown in
Figure 4.1. The quark and gluon inputs are collected in the same numbers
since the training performs better with the same amount of quark and gluon
inputs in neural network models.
Training is performed using a single NVIDIA Tesla T4 GPU with 500000
quark jet and 500000 gluon jet while 250000 quark jet and 250000 gluon
jet for testing. The testing here means that the trained q/g tagging models
are applied to other samples to check that the overtraining does not occur.
Different models require different times to train. The BDT model is the
fastest one with around half an hour while Deep Sets and Energy Flow models
need the most time with approximately 6 hours.

4.2 Quark/Gluon Tagging Models

This study uses several q/g tagging models to predict whether it is quark
or gluon. This section has documented the details of q/g tagging models.
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The conventional q/g tagging model usually used is the BDT model while
neural network models are usually used in recent decades. This is because
compared to the BDT model which can only use high-level input such as
ntrack, trackwidth and trackC1, the neural network models are able to utilize
more low-level inputs such as the pT of each track in the associated jet and
the energy from each calorimeter layer. The performance of q/g separation
usually increases in the neural network since low-level input represents more
information used for inference.
The BDT model and its conventional inputs (ntrack, trackwidth, trackC1)
are described in Section 4.2.1. BDT model is used as a baseline to make
the comparison with other neural network models. The neural models are
introduced from Section 4.2.2 to 4.2.5. MultiLayer Perceptron (MLP) model,
the simplest neural network model (Since the MLP only uses the dense layers,
the most straightforward unit in the neural network models, it can only input
the high-level information.), is shown in Section 4.2.2. Convolutional Neural
Network (CNN) model is demonstrated in Section 4.2.3. CNN model is a
neural network model using image input. Hence, CNN can use the position
and pT of each track information that represents low-level input. MLP and
CNN models are combined into the MLP-CNN model demonstrated in 4.2.4.
Pointwise models are introduced in Section 4.2.5 which there are two types
of models, the Deep Sets model and the Energy Flow model. These two
models have a similar structure while energy flow multiplies track pT with
other terms such as ϕ, η in the model.

4.2.1 BDT Model

The BDT machine algorithms are implemented by the Toolkit called Multi-
variate Data Analysis (TMVA [18]) on ROOT [31] based analysis tool. The
principle of the BDT model is having a different cut on different variables to
obtain the best classification. First of all, give a cut on one of the variables
and calculate the remaining signal and background percentage. Secondly,
choose the better one and give another cut on another variable. This second
cut also provides the remaining signal and background sample percentage.
The step above keeps performing until it is stopped which usually depends
on the MaxDepth of the BDT. The schematic illustration is shown in Figure
4.2. The signal background ratios are calculated with the different decision
trees until the best selection is determined. Boosting here means that the
trees depend on the prior trees. This ensures that the final trained model
is more stable and has better accuracy. Quark jets are input as the signal
sample while gluon jets are input as background in the BDT model. The
setup of BDT model is listed in Table 4.1.
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Figure 4.2: The illustrating figure for the decision tree. In this example,
the first threshold cut is the number of tracks larger than 24. The sample
satisfying the threshold goes left, otherwise right. The additional selection
thresholds are performed depending on the MaxDepth setup in the BDT.

The BDT model learns the MC samples with ntrack, trackwidth and trackC1
variables, shown in Figure 4.3. The brief descriptions of the BDT setup
option are explained as follows.

• AnalysisType : The learning samples have binary labels, so classifica-
tion analysis is used.

• NTrees : Number of trees in the BDT model.

• MinNodeSize : Minimum fraction of training events

• MaxDepth : Max depth of the decision tree.

• AdaBoostBeta : The parameter in the AdaBoost boosting technique.

• AdaBoost : An algorithm that can learn the past error sequentially
from the previous training.

• BaggedSampleFraction : Relative size of bagged event sample used in
the MC sample.
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Table 4.1: The setup of BDT model.
AnalysisType=Classification
NTrees=850
MinNodeSize=2.5%
MaxDepth=3
AdaBoostBeta=0.5
BaggedSampleFraction=0.5
SeperationType=GiniIndex
nCuts=20

• Bagged event sample : The sample selected from the bagging method is
an algorithm to reduce the variance of the sample to avoid overfitting.

• SeparationType : The separation criterion for node splitting.

• node splitting : A decision tree makes the decision and divides a node
into multiple sub-nodes to determine the better decision.

• nCuts : Number of grid points in the variable region used in determin-
ing the optimal cut in the node splitting.

4.2.2 MLP Model

MLP model is the simplest neural network model that connects several dense
layers. The structure is displayed in Figure 4.4. The dense layer consists of
several neurons with different kernel functions and weights. The weight (The
arrow mark in Figure 4.4.) is upgraded by the gradient descent method,
shown as follows.

∆ωji(n) = −λ ∂ε(n)
∂νj(n)

yi(n), (4.1)

where λ is the learning rate, yi is the output of the previous neuron. ε is the
square sum of error (truth value − prediction). ν is the variable in the kernel
function. Each neuron is connected to all neurons in the previous dense layer
or all inputs. The input values with weights will be calculated in the kernel
function and output a value to the following dense layer.
There are 31 inputs for each small-R jet. The inputs are connected to two
iterations of the dense layer with 64 neurons and finally output the quark
and gluon jet classification. The 31 inputs are described as follows, ntrack,
trackwidth, trackC1, electromagnetic energy fraction and the energy of the
calorimeter layers. The calorimeter layers used in the MLP model are shown
in Table 4.2. Rectified Linear Unit (ReLU) [32] activation is utilized for all
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Figure 4.3: The BDT response of quark jet and gluon jet with the pythia
multijet MC test sample.

dense layers. Dropout=0.3 [33] is also applied to all dense layers in order to
prevent overtraining. Additionally, an L2 regularization [33] with strength
10−8 is used in all layers. Also, earlystopping is applied to patience=15
to prevent overfitting and epochs = 100. The optimizer is Adam and its
learning rate equates to 10−5. The loss function is set as SparseCategorical-
Crossentropy1 [33]. The MLP output is a softmax function [33] of size two
which provides the probability of quark and gluon relatively. The option is
summarized in Table 4.3.

4.2.3 CNN Model

The MLP and BDT can only utilize the high-level inputs, causing informa-
tion loss during the calculations. The image inputs are considered as a new
input that includes low-level information. 2D Convolutional Neural Network
(CNN) is a deep learning model used to learn visual images. Therefore,

1A format of true label inputs when training the models.
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Figure 4.4: The structure of the MLP model used in this study. There are
31 inputs with one input jet, passing through two 64-neurons dense layers.
Finally, the input jet is classified as a quark or gluon jet.

Table 4.2: The energy inputs of calorimeter layers used in the MLP model.
LAr barrel LAr EM endcap Hadronic endcap Tile barrel
PreSamplerB PreSamplerE HEC0 TileBar0
EMB1 EME1 HEC1 TileBar1
EMB2 EME2 HEC2 TileBar2
EMB3 EME3 HEC3

Tile gap Tile extended barrel Forward EM endcap Mini FCAL
TileGap1 TileExt0 FCAL0 MINIFCAL0
TileGap2 TileExt1 FCAL1 MINIFCAL1
TileGap3 TileExt2 FCAL2 MINIFCAL2

MINIFCAL3

converting the track and topo-cluster information into a visual image is nec-
essary.
The CNN model and its inputs in this study follow the previous study [34].
All constituents in a jet are rotated to ϕjet = ηjet = 0 based on the center of
the associated jet to form a jet image. And then, the pT of each track and
cluster in the associated jet is used to fill into a fixed grid of size 16 × 16 at
|η| < 0.4 and |ϕ| < 0.4 region. After the transformation, the center of the
jet is at the center of the image and the pixel size is η × ϕ = 0.05 × 0.05.
Next, the image is normalized to

∑
i pT,i = 1. The normalization must drop

some information, but according to [34], the impact is small enough to ig-
nore. Another advantage of normalization is that it will work better in neural
network training. The topo-cluster and track constituents of a quark jet im-
age are displayed in Figure 4.5. The average of millions of quark and gluon
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Table 4.3: The setup of neural network models in this thesis.
Activation Function=ReLU
Dropout=0.3
Regularization=L2
Optimizer=Adam
Learning Rate=10−5

Output=Softmax function
Loss function=SparseCategoricalCrossentropy

topo-cluster images and their image difference are displayed in Figure 4.6.
Reminding that the trackwidth distribution of gluon jet is more significant
than quark jet. This property can also be seen in Figure 4.6. The middle
image in Figure 4.6 shows that the average of quark jets concentrates more
than gluon jets which is a good discriminant in the CNN model to separate
quark and gluon particles.
The jet images reconstructed above are implemented as inputs into the CNN
model. The CNN model is a feed-forward artificial neural network that cal-
culates the weights linearly on a m× n size input image. The input image is
divided into several pixels and sent to the Convolutional filter. In the con-
volutional filters, the output of each filter is calculated by dot-product with
different weights, shown in the following equation.

O = MI + B, (4.2)

where, O and I represent the output and input of the convolutional filter. M
is the weighting matrix and B is a constant matrix. Tuning the weighting
matrix can change the image size of output and input.
After the operation, a new output image is reconstructed for the next fil-
ter. Max-pooling is another procedure for down-sampling the image. The
output of Max-pooling is the maximum value in the defined image. The
non-overlapping sets of pixels are taken from convolutional filter input and
find the maximum value in the sets of pixels as output. The process in the
Max-pooling is implemented to obtain the characteristic feature in the im-
age. After the convolutional filter or Max-pooling, the 2-dimension image is
flat into a 1-dimension dense layer. Then, the same thing done in the MLP
model performs again to obtain the probability of quark jet and gluon jet.
The illustration of the CNN model is shown in Figure 4.7. Track and topo-
cluster normalized pT images are used as one input in which the input shape
is (16,16,2) in the CNN model. The CNN model consists of three iterations
of a convolutional layer and is then connected with one Max-pooling layer.
The Max-pooling layer is flatted and connected to two 1-dimension dense



CHAPTER 4. QUARK/GLUON TAGGING 38

3−10

2−10

1−10

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4
φ

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4η

Simulation Work in progress ATLAS

Quark Small-R Jets, Cluster Constituents
|<2.1η=13TeV, |s

3−10

2−10

1−10

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4
φ

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4η

Simulation Work in progress ATLAS

Quark Small-R Jets, Track Constituents
|<2.1η=13TeV, |s

Figure 4.5: The CNN input image of quark jet. The topo-cluster constituents
image is on the left hand side while the track constituents image is on the
left hand side. Both of them have 16×16 pixels at |η & ϕ| < 0.4 region. The
constituents in the associated jets are rotated to ηjet = ϕjet = 0 and their pT

are normalized to
∑

pT = 1.

layers followed by a softmax function of size two, giving the probability for
quark and gluon jet. Three convolutional filters have respectively 256, 128,
64 filters, which the sizes of filters are 7 × 7, 5× 5, 3× 3. The Max-pooling
layers are operated with 2× 2 downsampling. Two dense layers have 64 neu-
rons, followed by softmax function. The setup of the CNN neural network
model is the same as the MLP model, shown in Table 4.3.

4.2.4 MLP-CNN Model

MLP-CNN model consists of MLP model and CNN model described in Sec-
tion 4.2.2 and 4.2.3. For the MLP part, there are 31 inputs including ntrack,
trackwidth, trackC1, EM energy fraction and energy of the calorimeter lay-
ers shown as Table 4.2. For the CNN part, topo-cluster and track images,
same with the CNN model in Section 4.2.3. Combining MLP and CNN mod-
els means both high-level and low-level inputs are able to be used for more
information of jets. There are two dense layers with 64 neurons for DNN
parts. Same as CNN model in Section 4.2.3, three convolutional filters of
256, 128, 64 filters with size of 7 × 7, 5 × 5 and 3 × 3 respectively. Then
the convolutional filters are followed by a Max-pooling layer with a size of
(2,2). Finally, the output images are flatted to a 128-neuron dense layer. In
order to combine MLP and CNN models, concatenate function is operated
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Figure 4.6: The average intensity of topo-cluster quark and gluon jets. The
left image shows the average of topo-cluster quark jets while the right image
shows the topo-cluster gluon jets. The middle image is drawn with the
difference between the average of quark jets and gluon jets.

Figure 4.7: The schematic illustration of CNN architecture is taken from
[34]. Track and topo-cluster normalized pT images are used as input in this
thesis.

to connect the 64-neuron dense layer in the MLP model with the 128-neuron
dense layer in the CNN model. After combining two dense layers from MLP
and CNN, respectively, it is followed by a 192-neuron dense layer and then
output the softmax function with the size of two neurons which predict the
quark-like and gluon-like probability. The setup of the MLP-CNN neural
network model is listed in Table 4.3.

4.2.5 Pointwise Model

The CNN model is needed to have an image input, making the learning in-
convenient. The Pointwise model is introduced as a model that can directly
use input variables. This section has two Pointwise models: The Deep Sets
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Figure 4.8: The schematic image of the Deep Sets and Energy Flow. For
the Deep Set, the pT, η, ϕ of topo-cluster or track is sent to input and
the summation is operated to output the result followed by several dense
layers. On the other hand, for Energy Flow, only η and ϕ are input and they
are weighted by the associated pT before the summation. Then after the
summation, they are also sent to several dense layers. The dense layers above
are connected to the MLP input dense layers to perform the quark/gluon
separating.

model and the Energy Flow model. The Deep Sets and Energy Flow models
have been recently developed well. For example, in ref [35], the Deep Sets
model is used to generalize the permutation-invariant functions of variable-
length in point clouds. Using the Deep Sets model, it is possible to solve
the problems such as red-shift estimation of galaxy clusters. The critical
operation in Deep Sets is the summation since symmetry usually exists in
many physics fields. The summation operation can encapsulate the symmet-
ric effect in the latent space. Consider a physics observable O is a symmetric
function. Then the Deep Sets model can be written as follow.

O(x1 , ..., xM ) = F (
M∑
i=1

Ψ(xi)) (4.3)

Here xi is (pT , η, ϕ) of i-track or i-topo-cluster for Deep Sets model. And Ψ
represents the operation before summation.
Next, let’s consider a homogenous physics observable O again. With a modifi-
cation of Equation 4.3, infrared-safe and collinear-safe (IRC-safe) observables
can be added, shown as the following equation.

O(x1 , ..., xM ) = F (
M∑
i=1

ziΨ(xi)) (4.4)

Here xi represents (η, ϕ) of i-track or i-topo-cluster and zi is the pT of each
track in the Energy Flow model. Ψ is the operation before summation. The
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summation operation implies that the infrared safety is still satisfied. The pT

weighting indicates that although the particles split into two particles, they
can be reconstructed as if a vector with pT weight. Hence, the Energy Flow
model satisfies infrared safety and collinear safety which is named IRC-safe.
The definition of IRC-safe is shown as follows.

1. Infrared safety : The observable is not affected by the low-energy and
long distance physics, such as soft emission.

2. Collinear safety : Collinear splittings of particles don’t affect the result.

The Pointwise model consists of several 1×1 kernel convolution layers. The
calculations of the Pointwise model and the CNN model are similar. They
are both operated by matrices to obtain the outputs. The output of the
CNN model is an image. However, the output of the Pointwise model is one
dimension layer. There are 140 sets of inputs for the tracks in the Deep Sets
case. Each set of inputs will be operated with a matrix and output into a
(64,1) one dimension layer. Therefore, there are 140 sets of one dimension
layers after the operation.
Unlike the CNN model that only tackles the image inputs, Pointwise models
are more flexible to have other kinds of inputs. Another advantage of the
Pointwise model over the CNN model is that it is more convenient to input
all pT, η, ϕ information of associated tracks and topo-clusters. In the CNN
model, the pixel size of the image is always a troublesome issue. If the pixel
size is too large, the resolution and accuracy decrease. On the other hand,
computer memory and training time become a fatal problem if the pixel size
is made too tiny. This leads to a fundamental defect for the CNN model. In
the Pointwise model, it can take pT, η and ϕ as a set of input. Hence, as
there are, says fifteen tracks, only fifteen inputs are needed in the associated
jet. This saves the computer memory and time, and can use the jet informa-
tion directly (the CNN model needs to transform the jet information into an
image, so some information is lost actually.).
Since the Deep Sets and Energy Flow models are similar, the entire architec-
ture will be introduced first, followed by the precise structure. The inputs
are separated into two parts, MLP inputs and CNN inputs. For the MLP
inputs part, it is the same as the MLP model, ntrack, trackwidth, trackC1
and calorimeter layer energy; a total of 31 inputs are taken. For CNN parts,
the input shape is different for track and topo-cluster. The shape of track
and topo-cluster is (140, Φ) and (70, Φ), respectively. Here Φ is (pT, η,ϕ)
for the Deep Sets model and (η,ϕ) for the Energy Flow model. The num-
ber of 140 and 70 is set because the maximum of ntrack and ncluster is found
fewer than these two numbers. This ensures that all track and topo-cluster
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information is taken as inputs. If the inputs don’t approach the upper limit,
say 140 or 70 for track and topo-cluster inputs, respectively, then the inputs
are set to zero in order not to affect the training result. Then all inputs
above are connected with several 1×1 convolutional layers followed by some
operations and several dense layers. (1×1 kernel convolutional layer is called
by Conv1D function in TensorFlow [36].) The following describes three in-
put parts, track input, topo-cluster input and MLP input for Deep Sets and
Energy Flow models.

• Track and topo-cluster inputs
(140/70, [pT, η, ϕ]) and (140/70, [η, ϕ]) are inputs in Deep Sets
and Energy Flow for track/topo-cluster, respectively. Then there are
three iterations of 1×1 kernel convolutional layers with the size of (64,
1)/(32,1). After passing three 1×1 convolutional layers, there is a small
difference between Deep sets and Energy Flow models. For Deep Sets
one, the output of the last 1×1 convolutional layer is multiplied with
the initial input (pT, η, ϕ). The reason for multiplying them is that
there are some zero terms in the 140/70 inputs initially because the
track number varies in different jets. The multiplying operation ini-
tializes the 1×1 convolutional layers by multiplying with the initial
inputs. For example, there are five tracks in a jet. Therefore, the 140
1×1 convolutional layers multiplying with the initial inputs make only
the first five 1×1 convolutional layers have value and the others are
initialized to zero. Next, the summation is implemented to satisfy the
Infrared Safety. For the Energy Flow model, the output of the 1×1
convolutional layer is multiplied with (pT) in the initial input. Then
the summation is performed again. Multiplying pT and summing op-
eration satisfy the IRC-safe for the Energy Flow model. Finally, two
dense layers with 128/64 neurons follow the summing operation output
in both cases.

• MLP input
In the MLP input section, Deep Sets and Energy Flow models have the
same structures. There are 31 inputs connected to three iterations of a
1×1 convolutional layer with a size of (16, 1) followed by two 64-neuron
dense layers.

Then the outputs from MLP, track and topo-cluster are connected and sent
to a 192-neuron dense layer followed by a softmax function of size two to
perform the q/g discriminant.
Same as the models mentioned before, the setup of Pointwise models is de-
scribed in Table 4.3.
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Table 4.4: A summary of the input variables in each model.
Model Input variables

ntrack

BDT trackwidth
trackC1

ntrack

MLP trackwidth calorimeter layer energy
trackC1

CNN η, ϕ pT(ϕ,η)
all pT

= pT,norm

η, ϕ, pT,norm
ntrack

Pointwise calorimeter layer energy trackwidth
trackC1

4.3 Performance of q/g Tagging Models

This section demonstrates the performance of the BDT, MLP, CNN, MLP-
CNN, Deep Sets and Energy Flow model and the performance between the
different testing samples. The input variables are summarized in the Ta-
ble 4.4. Section 4.3.1 shows the Receiver Operating Characteristic Curve
(ROC) curve of each model. Also, it describes the dependence of both pT

and η of associated jets and explains the difference among all models. Section
4.3.2 compares two kinds of MC samples generated Pythia and Herwig. The
Pythia MC sample is a leading-order generator, and the Herwig MC sample
is a next-leading-order generator. The difference between the Pythia and
Herwig generators is the hadronization model. The hadrons are generated
based on the string generating and cluster model in the Pythia and Herwig,
respectively. Comparing these two MC samples gives brief research of study-
ing MC sample generators for future works.
Since the earlystopping is applied to all neural models to avoid overtrain-
ing, the loss function convergence is examined and the overtraining didn’t
happen.

4.3.1 Receiver Operating Characteristic Curve Result

The receiver operating characteristic curve (ROC curve) shows the discrimi-
nation ability of a binary classifier system. Since the q/g tagger in this model
is a binary tagger, it is convenient to compare the performance among differ-
ent tagging models. There are many different types of ROC curves. In this
section, the x axis represents the quark efficiency rate which means the per-
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Figure 4.9: The ROC curves of all q/g taggers are described in Section 4.2.
Quark Efficiency/Gluon Rejection (x and y axis) represents the percentage
of remaining quark/rejected gluon after the threshold cut on quark/gluon
discrimination output.

centage of remaining quark after the discrimination threshold. On the other
hand, the y axis represents the gluon rejection rate which means the per-
centage of rejected gluon after the discrimination threshold. The definition
is shown in the following equations.

Quark Efficiency =
Ntrue postive

Npositive

, Gluon Rejection = 1− Ntrue negative

Nnegative

, (4.5)

where Npositive and Nnegative are the numbers of particles with a quark and
a gluon labels generated by the MC generator (it is the numbers of quarks
and gluons, respectively.). True positive means it is a quark and predicted
as a quark by the q/g tagging models. True negative means it is a gluon and
recognized as a gluon by the q/g tagging models. Using this definition, the
ROC curve of q/g taggers in this study are shown as concave curves and the
ROC curve with up and right curvature has better performance.
Figure 4.9 shows the ROC curve of all q/g tagger introduced in Section 4.2.
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Figure 4.10: The topological cluster image in 1000 < pT < 1500 GeV region.
Left image has the pixel size of 0.05 at |ϕ, η| < 0.4 while right image has the
pixel size of 0.0375 at |ϕ, η| < 0.3.

Deep Sets (red curve) and Energy Flow (yellow curve) models have almost
the same performance and achieve the best performance among all models.
The inputs of the Pointwise model (Deep Sets and Energy Flow) are the
same as MLP-CNN (green curve) model but better than it. This implies
that compared to the MLP-CNN model, the Pointwise model utilizes the
information of inputs more efficiently. The pointwise model utilizes the track
and topo-cluster information better than the MLP-CNN model since CNN
input is needed to consider pixel size limitations.
Ideally, the CNN (blue curve) model should have performed better than MLP
(black curve) and BDT (dotted brown curve) tagger because the CNN model
uses more low-level inputs with more information than the MLP and BDT
with only high-level inputs. However, the ROC curve shows that the CNN
model is worse. This is because pixel size optimization is needed to maximize
the performance of the CNN model. To check how pixel size optimization
problems affect the performance, the pixel is tuned to a smaller size, shown in
Figure 4.10. The η and ϕ range are changed from smaller than 0.4 to smaller
than 0.3, and the pixel size becomes from 0.05 to 0.0375. This smaller pixel
size allows one to see the track and topo-cluster image more precisely. The
result is shown in Figure 4.11. The pixel size is related to the amount of input
information. Therefore, the performance of smaller pixel sizes better than
larger pixel size emphasizes how significant the input variables are. As the
pixel size becomes smaller, the performance of the CNN model gets better as
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Figure 4.11: The comparison between different pixel size CNN tagger. A
smaller pixel size CNN model (brown curve) is apparently having a better
larger pixel one (black curve). This indicates that ideally reducing the pixel
size gives the same performance as the Pointwise model.

expected. Nevertheless, the smaller pixel size in the same η, ϕ range implies
more pixel numbers. This requires more computer memory and takes more
time to train the models, which is impractical.
Although the performance of the MLP-CNN model is worse than the Point-
wise model, it is better than any others. The MLP-CNN inputs usage gives
a better result than MLP, BDT, and CNN models that use partially or less
information.
The MLP model is better than the BDT model because MLP utilized the
calorimeter layer energy as additional inputs. Again, these things imply the
importance of the input. For comparing the difference between different ar-
chitecture, the MLP using only ntrack, trackwidth, trackC1 variables are also
input. The result is shown in Figure 4.12 and the difference between them
is tiny. From this, it is known that the tagger performance depends more on
the input variables and the way to tackle the inputs, and not so much on the
model architecture.
Finally, compared to the conventional tagger (BDT model), considered as
the baseline of machine learning, the gluon rejection rate of the Pointwise
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Figure 4.12: Compare MLP and BDT tagger with same inputs (ntrack, track-
width, trackC1). With the same inputs, the performance of the two models is
similar, indicating that input information is more important than the model
architecture.

models improved approximately 10% better at the 80% quark efficiency rate,
where the gluon rejection rates of Pointwise and BDT models are around
75% and 68%, respectively. This shows that neural network models using
low-level inputs can improve the q/g tagging significantly.
Besides the performance at all ranges, the dependence on pT and η is also es-
sential. Different transverse momentum and pseudorapidity range indicates
the different fields of physics analysis. Hence, different strategies are needed
to consider in the associated region. Figure 4.13 displays the pT and η de-
pendance for all models. They are plotted at 80% quark efficiency which
means 80% quark remains as gluon jet rejection rate is obtained.
In the pT dependance plot (top), the bin is set to 100 GeV below 1000 GeV
such as 0-100 GeV, 100-200 GeV, etc. Above 1000 GeV, 1000-1500, 1500-
2000, 2000-3000, 3000-4000, 4000-5000 GeV bins are selected. It comes to
be better performance as pT increases in the plot. Worse performance at low
pT region results from the similar track and topo-cluster distribution of low-
energy quark/gluon. The high-energy gluon jet turns into generating more
particles, making it easier to implement the q/g tagging. At pT < 100 GeV
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Figure 4.13: The transverse momentum (top) and pseudorapidity (bottom)
dependence of all models introduced in Section 4.2. The y axis in both plots
is gluon jet rejection rate at 80% quark efficiency rate.
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region, all model has similar performance. At 100 < pT < 200 GeV region,
the Deep Sets, Energy Flow and MLP-CNN tagger have better performance.
In the η dependance plot (bottom), the |η| bin is selected as 0-0.5, 0.5-1, 1-1.5,
1.5-2.1. It performs better at the low η region because of the inner detector
in the ATLAS. At lower η, the number of associated jet tracks increases and
gives more information. More information brings better accuracy and better
performance. Same as the pT dependence plot, Deep Sets and Energy Flow
taggers have the best performance among all models in all regions. It can be
concluded that neural network models can use more information and better
performance at all pT and η regions.
In conclusion, it is worthwhile to use different types of flexible neural net-
work models to include more jets information to operate the q/g tagging. For
example, besides the pT intensity of track and topo-cluster used in Pointwise
models, the charge of particles inside the jets can be added to the Deep Sets
model as another input information.

4.3.2 Difference Between Pythia and Herwig MC sam-
ple

The MC sample used in Section 4.3.1 is generated by Pythia 8 generator.
To compare the difference between other MC generators, this Section intro-
duces another MC sample based on Herwig 7 generator [37]. The multijet
MC sample generated by Herwig 7 matches to next-to-leading order (NLO)
calculations developed by Matchbox module [38]. Predictions of the NLO
calculations in the perturbative effects of QCD in the strong coupling give
significant accuracy in the LHC experiments. Moreover, the MC sample gen-
erated by Herwig 7 in this section exploits the angular-ordered and dipole
showers for the multijet merging algorithm [37, 38].
The multijet MC samples generated by Pythia 8 and Herwig 7 are learned
in Deep Sets and Energy Flow models, respectively. And then the models
trained on different MC samples are used to test Pythia 8 and Herwig 7
generated Samples. There are four different categories. Trained on Pythia
and tested on Pythia, trained on Pythia and tested on Herwig, trained on
Herwig and tested on Herwig, trained on Herwig and tested on Pythia. Com-
paring these four categories with Deep Sets and Energy Flow to investigate
the properties of different models and MC samples. The ROC curves for
Deep Sets and Energy Flow models are plotted in Figure 4.14. From the
ROC curves, it is clear that no matter what samples are used to train, the
performance of testing on Pythia Sample is always better than testing on
Herwig Sample.
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Another thing is that the Energy Flow satisfies IRC-safety, and it is ex-
pected to have several advantages. First, the IRC-safe satisfying models less
affected by the soft emission indicate they can perform better at the lower
energy scale, which is extremely important for the quark/gluon discriminant.
Second, IRC-safe models correspond to the robustness of the collinear split-
ting, implying the consistency of distinguishing quarks and gluons’ ability.
Third, the models have more generality on both Pythia and Herwig Samples,
even when based on different hadronization generating methods.
From difference panels in Figure 4.14, the difference between Pythia and
Herwig testing on Energy Flow is smaller than on the Deep Sets model. The
results above give several brief conclusions. Either trained on Pythia MC
sample or Herwig Sample, testing on the same MC sample has similar re-
sults. This can be seen by comparing the dotted lines or solid lines. Then,
the MC sample generated by the Pythia seems more accessible to separate
quarks and gluons by q/g tagging than the MC sample generated by the
Herwig generator. Finally, the Energy Flow model has more similar perfor-
mance between the different MC samples, but further research is still needed
to investigate whether this is from IRC-safe ability. These might result from
the fundamental difference of the generating strategy between Pythia and
Herwig generators.
The difference of ntrack, trackwidth and trackC1 between Pythia and Herwig
MC samples are described in Appendix A. This section gave a brief work for
studying these two MC samples with Deep Sets and Energy Flow models.
It is also attractive to analyze the Pythia and Herwig MC samples with not
only Deep Sets and Energy Flow but also other neural network models that
can utilize more low-level information for future works.
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Figure 4.14: The ROC curves trained on Herwig or Pythia and tested on
Herwig or Pythia with Deep Sets/Energy Flow models are shown in the
top/bottom figure. Solid/Dotted curves represent testing on Pythia/Herwig
Sample. Blue/Red curves represent training on Pythia/Herwig Sample. The
black solid/dotted line stands for the difference between the models training
on the different samples and testing on the same samples.



Chapter 5

Quark/Gluon tagging
Application in 1-lepton
Semileptonic VBS

The q/g tagger should improve the sensitivity to searches and measurements
of electroweak processes in the hadronic final state, characterized by quark-
induced jets in the events. Usually, analyses using hadronic final states are
complex at the LHC due to the huge amount of multijet background. How-
ever, if the q/g tagger can select quark-induced jets while suppressing the
gluon-induced jets, it can strongly suppress the multijet background. As a
benchmark electroweak process at the LHC, VBS has been studied in this
chapter. Since the Energy Flow model has the best performance among all
models, it is used to separate the VBS signal and background samples for
validation.
The measurement of the semileptonic VBS processes was performed by AT-
LAS using a 36fb−1 dataset [12]. This thesis only focuses on the 1-lepton
resolved channel for convenience. In the 1-lepton resolved channel, aiming
for WW and WZ scatterings at the lower effective center-of-mass energy, the
signal candidate events were selected by four hadron jets, in addition to ex-
actly one lepton in the event. For signal events, all four jets are originated
from quarks. The main sources of the background process are W+jets and tt̄.
About 32%, 12%, and 1% of W+4jets events have 2, 3 and 4 gluon-induced
jets in the selected jets. In this thesis, the analysis in Reference [12] is tried
to be reproduced, and the impact of the q/g tagger is studied.
The MC samples used for Application and the setup for their generators are
demonstrated in Section 5.1. The Event Selection for 1-lepton semileptonic
VBS and background Samples are shown in Section 5.2. There are mainly
three q/g tagging strategies for selecting purer VBS signal, also introduced

52
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Figure 5.1: An illustrating diagram of a VBS topology taken from [12].

in Section 5.2. The performance and comparison of different strategies are
described in Section 5.3.

5.1 Introduction of MC samples

The signal sample used for q/g tagging application is the semileptonic VBS
MC sample. For the brief application, only two kinds of background samples
are used in this Chapter. One is W+jet and the other one is tt̄ MC sample.
In the VBS process, two forward jets originate from spectator quarks. This
forward jet pair is required with the highest invariant mass (referred to mtag

jj )
of all small-R jet pairs in each event. There are also two Vector bosons (Z or
W bosons). In this thesis, one decays into two quarks and the other decays
through the leptonic process, which is the so-called semileptonic process.
The schematic diagram is shown in Figure 5.1. Section 5.1.1 gives a brief
introduction for Semileptonic VBS Sample and Background Samples in the
study. Section 5.1.2 explains the Object Definition such as lepton, jets, etc.

5.1.1 Signal Sample and Background Samples

The ATLAS experiment collects the luminosity 139 fb−1 of pp collision data
at

√
s = 13 TeV from 2015 to 2018 during Run II of the LHC. Therefore,

the signal and background samples used in this Chapter are scaled to the
luminosity of 139 fb−1.
This Chapter focuses on the 1-lepton channel of the Semileptonic Vector Bo-
son Scattering MC sample. There are two channels considered, which are
WW → ℓνqq and WZ → ℓνqq. The semileptonic VBS samples are generated
by MadGraph (v.2.6.6)[39]+Pythia8[28]+EvtGen(v.1.7.0)[40]. The genera-
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Table 5.1: The MC samples used in Chapter 5.

Process Generator Cross section[pb]
VWjj→ ℓνqq+jj MadGraph + Pythia8 +EvtGen 2.25
W+jet → ℓν + jet SHERPA 2.2.1 6.16×104

tt̄ → ℓνqqbb POWHEG + Pythia8 + EveGen 396.89

tor uses the A14[30] and NNPDF23LO PDF[41] as a set of tuned parameters.
The VBS MC samples are generated with two on-shell vector bosons (WW
or ZW), which one decays leptonically (W → ℓν, where ℓ = e, µ, τ ) and the
other one decays hadronically (V → qq). The details of the MC sample are
shown in Table 5.1.
There are two background MC samples used in this application. One is
W+jet and the other one is tt̄ sample. The W+jet Sample is generated by
the SHERPA 2.2.1 event generator[42]. The W+jet event generator uses the
parameter set of NNPDF30LO PDF [41]. The W boson is enforced to decay
to a lepton and a neutrino in the W+jet MC samples.
tt̄ → WbWb → ℓνbqqb/ℓνbℓνb process is considered in the tt̄ MC sam-
ple. It is generated by the event generator POWHEG[43] + Pythia 8[28]
+ EvtGen (v1.6.0). The POWHEG event generator is the abbreviation of
POsitive Weight Harrest Emission Generator. As its name, only the positive
event weight is generated. The POWHEG event generator is developed to
tackle the negative event weight problem and is usually utilized in a hadronic
process.
This thesis aims to simulate the jjjjℓν final states. Electromagnetic parti-
cles and hadrons are simulated at the inner detector and calorimeters in the
ATLAS detector. Muons are simulated from the inner detector to the muon
spectrometer.
The backgrounds from the additional proton-proton collisions are referred to
as pile-up, presenting a serious issue to the analyses in the ATLAS. Thus,
pile-up background events are considered to study more data-like samples.
The Monte Carlo simulation method[44] is applied to generate the pile-up
events and add them with other events. Figure 5.2 shows the distribution of
interactions mean number utilized to run the simulation events.

5.1.2 Physics Object

Physics Object is defined from the particles representing the observed charac-
teristics and used to reconstruct the events. In this section, the lepton(e, µ),
Jet and Emiss

T will be described for the later analysis.
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Figure 5.2: Mean number of interactions per crossing from 2015 to 2018.

• Electron
In this analysis, the electron pT threshold is set at 30 GeV and |η| <
2.47 is required for the reason of inner detector cover range.
There are three working points (Loose/Medium/Tight) for Electron
ID[45], using the Likelihood-based (LH) algorithm. The electron ob-
ject in this chapter uses the TightLH working points. The details is
described in Table 5.2.
d0 is the minimum distance between the primary vertex and the track.
When d0 is calculated, the minimum distance point will be found on
the track. z0 represents the projecting distance between the primary
vertex and this minimum distance point on the z axis. The BL means
that the parameters are relative to the beamline and σ is its uncer-
tainty.
The electron object energy is calibrated by the BDT to reduce the ef-
fect from the calorimeters and their neighboring materials. The BDT
is trained by the MC simulations and tested by the MC samples and
real data detected in the ATLAS[46].

• Muon
Muons are minimum ionizing particles having long decay life. They
are expected to go through all devices in the ATLAS detector, from
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Table 5.2: The electron object definition used in this study.

Cut Selection
pT pT > 30 GeV
η |η| < 2.47
Track to Vertex Association |dBL

0 (σ)| < 5, |∆zBL
0 sin θ| < 0.5 mm

Identification ElectronID = TightLH

Inner Detector, calorimeter, to Muon Spectrometer[5]. Therefore, this
analysis requires that muons leave the tracks in these three regions.
The definition of the signal muon is shown in Table 5.3.
Z → µµ and J/ψ → µµ events are exploited to calibrate muon energy
scale and resolution. The calibration is imposed by fitting the invariant
mass of muon pairs of these two processes on the MC simulation to the
observed data.

Table 5.3: The Muon object definition used for the MC sample in this chap-
ter.

Cut Selection
pT pT > 30 GeV
η |η| < 2.5
Track to Vertex Association |dBL

0 (σ)| < 3, |∆zBL
0 sin θ| < 0.5 mm

Identification MuonQuality = Medium

• Small-R Jet
Jet is one of the essential physics objects in LHC experiments. The JVT
cut is utilized to suppress the object from the pile-up jet. The introduc-
tions of jet reconstruction are already shown in Section 2.3.1. This ap-
plication study focuses on the small-R jet investigating the quark/gluon
tagging. Table 5.4 shows the details of the definition for Small-R Jet
Object.
Small-R jet calibration consists of several serial steps: the origin correc-
tion, the jet are a based pile-up correction, the MC-based calibration,
and the global sequential calibration.
The origin correction performed in the first step is reorienting a small-R
jet to the primary vertex. Secondly, the jet area-based pile-up correc-
tion is imposed to reduce the impact of the pile-up contamination. In
the third step, the MC-calibration uses the MC simulation sample to
determine the energy response function of |η|. In the global sequen-
tial calibration step, the residual dependence on the jet substructure
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is corrected by the fraction of the jet energy measured in the hadronic
calorimeter.

Table 5.4: The Small-R Jet object definition used for the MC sample in
this chapter. EMPFlow represents the particle flows (small-R jets here) are
reconstructed with electromagnetic scale topo-cluster.

Cut Selection
Algorithm anti-kT (R=0.4)
Input Constituent EMPFlow
pT pT >20 GeV
η |η| < 4.5

> 0.95 for pT < 120 GeV and |η| < 2.4
JVT > 0.11 for pT < 120 GeV and 2.4 < |η| < 2.5

(Medium Working Point)

• Missing ET

Since neutrinos don’t interact with anything in the ATLAS detector,
observable physics objects’ energy and momentum vector are not con-
served. The missing transverse momentum vector in the detector is
defined as Emiss

T . The calculation can be written as Equation 5.1 easily.∑
ET =

∑
Ee
T +

∑
ET

γ +
∑

ET
τ

+
∑

Ejet
T +

∑
Eµ
T

+
∑

Esoft object
T + Emiss

T

(5.1)

Ee,γ,τ,jet
T represents the transverse energy ET of electron photon, τ lep-

ton and jet. Eµ
T represents the transverse energy of muon. Esoft object

T

represents the object is observable but cannot be defined as an ob-
ject with the selection, such as the soft particles not reconstructed into
jets.
The missing ET calibration is performed with Z → ee and Z → µµ
events. Since these events do not have neutrinos, the transverse mo-
mentum is used to calibrate the missing ET by measuring the deviations
from the ee, µµ events.
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5.2 1-lepton Event Selection

The selections are performed to enhance the signal purity. For an easy dis-
cussion, this section only describes the 1-lepton event. Section 5.2.1 demon-
strates the preselection first. Section 5.2.2 will introduce the BDT discrim-
inant and its variables. Section 5.2.3 shows that different strategies by q/g
tagging.

5.2.1 Preselection

According to the jet selection criteria, there are mainly two categories in the
semileptonic VBS process. One or more large-R jet in events is categorized
as merged events. Otherwise, events without large-R jets are categorized as
resolved events. For validating q/g tagging, this paper only discusses 1-lepton
resolved events.
For 1-lepton resolved events, the candidates include one lepton and one neu-
trino, a pair of tagging jets1. And a pair of signal jets originating from the
signal vector boson. Therefore, the preselection is imposed to obtain the pure
1-lepton resolved events.
The preselection cut is shown as follows.
The lepton trigger is applied to the MC samples in this Chapter. Common
small-R jet selection is applied to both tagging and signal jets, pT > 20 GeV
for |η| < 2.1 and pT > 30 for 2.1 < |η| < 4.5. The cut of |η| < 2.1 is because
the q/g tagging models uses the input variables at |η| < 2.1 region only.
For W → ℓν samples, only one tight lepton, and no loose lepton are required.
The tight lepton and loose lepton stand for the lepton passing through the
ElectronID and MuonQuality cut with a tight or loose working point. The
lepton (e and µ) transverse momentum threshold is pT > 30 GeV. The miss-
ing ET cut is also imposed with Emiss

T > 80 GeV because of the existence of
the neutrino.
For tagging jets selections, tagging jets are selected by choosing the largest
invariant mass(mtag

jj ) of a small-R jets pair each event. Both leading and
subleading tag jet transverse momentum is required as pT > 30 GeV. The
invariant mass of tagging jets pair satisfies with mtag

jj > 400 GeV. The mtag
jj

distribution is displayed in Figure 5.3.
For signal jets selection, other than tagging jets, the number of small-R jets
needs to be greater than or equal to two jets. To acquire more signal-like
events, leading signal jets transverse momentums are required as pT > 40
GeV.

1A jets pair directly coming from partonic quarks inside the collision protons.
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Figure 5.3: The mtag
jj distribution of 1-lepton resolved process. The events

are selected with the 1-lepton trigger and have exactly one lepton. Missing
ET cut and jet pT cut are also required as shown in Section 5.2.1.

Additional two preselection cuts are applied to enhance the purity. The num-
ber of b-tagged jets equal to zero is needed. The invariant mass of two signal
jets and a specific jet is required as mjjj > 220 GeV. The specific jet is selected
by calculating the closest invariant mass mjjj from the top quark mass2. This
selection is also imposed to reduce the background from the tt̄ → ℓνqqbb
process since top quark mainly decays through the process t → Wb → qqb.
After the selections above, two different signal jets pair section strategies are
considered in this analysis. One is 2leading and the other one is minmass,
shown as follows.

• 2leading : The signal jets pair is selected by choosing the two highest

2mt = 172.76 is used in this study.
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Figure 5.4: The distribution of signal jets pairs invariant mass. All preselec-
tion cuts except signal region cut are applied to both plots. The 2leading and
minmass strategies plots are shown on left and right, respectively. The 2lead-
ing has better significance because the background is less than the minmass
strategy. However, the minmass strategy has more signal and background
events, implying it might have more space to improve by q/g tagging.

pT small-R jets other than tagging jets.

• minmass : The signal jets pair is selected by choosing the two small-R
jets other than tagging jets that have the closest invariant mass from
W/Z boson mass3.

The 2leading strategy is a new selection strategy introduced in this thesis.
On the other hand, the minmass strategy was applied in the Reference [12].
Both 2leading and minmass strategies have different advantages and disad-
vantages. 2leading strategy has a larger probability of selecting the jets from
tt̄ samples, but the significance is better than the minmass strategy. The
invariant mass selection makes sure that the minmass strategy obtains more
jets decaying from W/Z vector bosons. However, the mjj distribution tends
to concentrate at 80-90 GeV region leading to the decrement of significance.
The mjj distributions of 2leading and minmass strategies are shown in Figure
5.4.
The signal region (SR) selection is defined as the invariant mass of signal jets
pair is within the range of W/Z boson mass. 64 < mjj < 106 GeV is imposed
to obtain a pure VBS signal. The summary of preselection is listed in Table

3This analysis utilizes mW = 80.385 GeV and mZ = 91.187 GeV.
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Table 5.5: A list of preselection for 1-lepton semileptonic VBS signal search
in this analysis. The jet mtag

jj and pT are shown in Figure 5.3 and 5.6,
respectively. Other distributions are described in Figure Appendix B
Objects Cuts threshold

W → ℓν

Number of Tight leptons 1
Number of Loose leptons 0
Emiss
T > 80 GeV

pT(ℓ) > 30 GeV

tagging jets pair
tagging jets pT > 30 GeV
mtag

jj > 400 GeV

Signal jets pair

Number of signal jets ≥ 2

pT(signal jet)
> 20 GeV for |η| < 2.1

> 30 GeV for 2.1 < |η| < 4.5
Leading jet pT > 40 GeV

Others
Signal Region 64 < mjj < 106 GeV
Number of additional b-tagged jets 0
mjjj > 220 GeV

5.5.
The BDT discriminant in Section 5.2.2 and q/g tagging model in Section
5.2.3 will be applied to both two strategies. And then the performance of
them will be discussed in Section 5.3.

5.2.2 BDT Discriminant

The SR (64 < mjj < 106 GeV) defined in the previous section is not enough
to observe the VBS signal process with the required significance. Hence,
the BDT machine learning tool is performed to enhance the SR purity. The
BDT is used to learn the signal sample (VBS sample) and background sam-
ples (W+jet and tt̄ samples), respectively. The W+jet and tt̄ MC samples
are applied the preselection individually. The input variable set and hyper-
parameters of the BDT in this analysis follow the example in Reference [12].
The chosen hyperparameters are shown in Table 5.6. The hyperparameters
are considered to be against overtraining effect.
Input variables are selected to have higher discriminant between signal and
background samples. Most variables are related to kinematics such as trans-
verse momentum. Furthermore, the quark/gluon separating variables such
as the number of tracks and trackwidth is also considered since the back-
grounds most come from QCD interactions which generate numerous gluons.
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Table 5.6: A summary of hyperparameters in BDT Discriminant model.

BDT hyperparameters 1-lepton
NTrees 800
MaxDepth 4
Shrinkage 0.3
MinNodeSize 5%
nCuts 20
UseBaggedBoost True
BaggedSampleFraction 0.5
SeparationType GiniIndex

There are totally 23 input variables for the BDT discriminant training. The
definition of each variable is described as follows.

• mjetjet : Invariant mass of jets pair.

• ∆ηjetjetjj : η difference between two jets.

• pjet1
T : Transverse momentum of leading jet.

• pjet2
T : Transverse momentum of subleading jet.

• wjet : Trackwidth of jet.

• njet
tracks : Number of tracks within jet.

• nj : The number of jets having track constituents.

• nj,extr : The number of additional jets other than the jets from the
vector boson.

• ∆R(ℓ, ν) : Angular separation between lepton and neutrino.

• ς
V
: Boson centrality, a topological variable.

• mVV : Invariant mass of two vector bosons from signal jets pair and
lepton-neutrino pair.

• mVVjj : Invariant mass of vector bosons pair and tagging jets pair.

Boson centrality is defined as ς
V
= min(∆η−,∆η+),

where ∆η+ = max[ηtag,j1 , ηtag,j2 ]−max[η(Vhad), η(Vlep)]
and ∆η− = min[η(Vhad), η(Vlep)]−min[ηtag,j1 , ηtag,j2 ]. This variable is sensi-
tive when the tagging jet has a significant separation in η.
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The W boson mass constraint determines the momentum of the neutrino on
the lepton because of W → ℓν decay. The entire calculation is shown as
following equations.

mW
2 = (Eℓ +

√
p2
T,ν + p2

z,ν)
2 − ((−→p T,ν +

−→p T,ℓ) + (pz,ν + pz,ℓ)),

= m2
ℓ + 2Eℓ

√
p2
T,ν + pT,ℓ − 2−→p T,ν · −→p T,ℓ − 2pz,νpz,ℓ,

(5.2)

where the mass of neutrino is set to zero. The pT,ν is assumed to be missing
ET and px,ν and py,ν are obtain from known ϕEmiss

T
. Therefore the remain-

ing unknown variable is pz,ν only and it can be calculated by a quadratic
equation.

0 = 4p2
T,ℓ·p2

z,ν−4(m2
W+2−→p T,ν ·−→p T,ℓ)]pz,ℓ·pz,ν−(m2

W+2−→p T,ν ·−→p T,ℓ)
2+4E2

ℓp
2
T,ν ,

(5.3)
where pz,ν is acquired by solving the root of the quadratic formula. The
smaller real component of the solutions is selected since it is close to the real
physics in this analysis. Eventually, four-momentum of neutrino is obtain-
able by collecting Emiss

T , ϕEmiss
T

, pz,ℓν and massless property.
To avoid overtraining and use all samples, cross-validation is used in BDT.
Cross-validation is a method that uses different portions of samples to train
and test on different steps. For example, the samples are divided into two
portions A and B in this analysis. In the first step, A sample is trained and
tested on B sample. And then the model trained with B sample is utilized
to test on A sample. Cross-validation is powerful to use better the training
and testing samples, which exploits much more information. The input vari-
ables and their linear correlation coefficients are evaluated and described in
Appendix C. Smaller linear correlation coefficients represent the weak corre-
lation worth inputting them to train. Generally, all input variables are found
to be good training inputs into BDT.
After training and testing in the BDT, the BDT score is output as a dis-
criminant between signal and background samples. A suitable BDT score
threshold is required to separate signal and background, which will be intro-
duced in Chapter 5.3. As a result, the BDT score threshold cuts down the
ratio of signal and background significantly. The BDT score distributions of
VBS signal sample, W+jet and tt̄ background sample are shown, respectively
in Figure 5.5.

5.2.3 Quark/Gluon Tagging Enhance

Quark/Gluon tagging models are studied in the previous Chapter. This sec-
tion will introduce the strategies of exploiting the Energy Flow tagger trained
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Figure 5.5: The BDT discriminant output of the 2leading (left) and the
minmass (right) strategies. From the comparison, the 2leading strategy has
a better separation between signal and background samples. Note that the
signal and background events are normalized to 1 in both figures.

Table 5.7: A summary of different selection strategies applied in this thesis.
2leading with BDT Discriminant minmass with BDT Discriminant

Energy Flow q/g tagging Neural 2leading Neural minmass
BDT q/g tagging BDT 2leading BDT minmass

in Chapter 4 to improve the signal significance. Moreover, the BDT q/g tag-
ger is also discussed to implement a quick comparison between the neural
network model and the BDT model. Including Energy Flow and BDT mod-
els, there are four types of strategies, described in Table 5.7. Basically, the
signal purity improved outstandingly after preselection and BDT discrimi-
nant enhance. Hence, the q/g tagging is based on the selection above as well.
Energy Flow and BDT q/g tagger output is utilized as a threshold cut after
2leading and minmass strategies mentioned in the previous section. Because
both Energy Flow and BDT q/g taggers are trained at |η| < 2.1, the out-
put threshold cut is only imposed for the jets that |η| <2.1. The ratios of
|η| < 2.1 quarks in the 2leading and minmass strategies are 60165/2137700
≈ 28.1% and 926571/3462640 ≈ 26.8%, respectively. The 2leading and min-
mass strategies followed by the Energy Flow model are referred to as neural
2leading and neural minmass strategies. In addition, 2leading and minmass
followed by BDT q/g tagger are referred to as BDT 2leading and BDT min-
mass strategies. Selecting signal jets pair with the order of Energy Flow or
BDT q/g tagger output is considered as another strategy. However, the per-
formance declined a lot compared to 2leading and minmass strategies. This
order strategy is shown in Appendix E.
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Figure 5.6: The transverse momentum distribution of the 2leading (left) and
minmass (right) jets at 139 fb−1. Both signal and tagging jets that |η| < 2.1
are chosen because they are the targets for implementing q/g taggers.

Although the Energy Flow tagger is shown much better than BDT tagger
in previous, their performance is comparable in this analysis since the jets
of the MC samples range at lower transverse momentum (approximately
smaller than 200 GeV, shown in Figure 5.6). This indicates that it is worth-
while comparing these two different q/g taggers. The outputs of Energy Flow
and BDT q/g taggers are shown in Figure 5.7 and Figure 5.8, respectively.

5.3 Application Results

Both the 2eading and minmass strategies with BDT discriminant are well
studied in the previous research and improved a lot. Unlike the BDT dis-
criminant that uses high-level input variables, Energy Flow q/g tagging with
low-level inputs is expected to improve much more than the previous meth-
ods. Therefore, the different strategies introduced above will be compared in
this section. Section 5.3.1 introduces a criterion, significance, for the perfor-
mance judgment. Section 5.3.2 describes the signal-backgrounds separation
performance of the BDT discriminant as a baseline analysis of the following
q/g tagging models. Section 5.3.3 will show the q/g tagging ability and its
improving limit. Section 5.3.4 demonstrates the significance of all strategies
and shows the improvement after applying Energy Flow q/g tagging.
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Figure 5.7: The Energy Flow q/g output distribution of 2leading (left) and
minmass (right) jets. Both signal and tagging jets that |η| < 2.1 are chosen
because they are the targets for implementing q/g taggers. The energy flow
output is the likelihood probability of quark. Therefore, it ranges between 0
to 1.

5.3.1 Discovery significance and Uncertainty

Discovery significance is an estimating value to describe the opportunity that
the observation is not from the background fluctuation and is believable.
Significance can also be related to the p-value which provides the probability
of different observations occurring. The smaller p-value implies that the
test hypothesis is false. The relation of significance Z and p-value can be
described as Equation 5.4.

Z(Ns,Nb, δb) =
√
2erf−1(1− 2p), (5.4)

where Ns, Nb and δb represents the number of signal events, the number of
background events and the uncertainty of background events. erf represents
the error function. And the definition of p-value is shown in the equation
below.

p =

∫ ∞

0

db N(b;Nb, δbNb)
∞∑

i=Ns+Nb

P(i; b), (5.5)

where N and P are Gaussian and Poisson distribution, respectively.
The significance in this study was calculated by BinomialExpZ inRooStats.
To compare different situations, the background systematic uncertainty is set
to 10%, 20% and 30%, respectively.
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Figure 5.8: The BDT q/g output distribution of 2leading (left) and minmass
(right) jets. Both signal and tagging jets that |η| < 2.1 are chosen because
they are the targets for implementing q/g taggers.

5.3.2 Sensitivity of the Baseline Analysis

The 2leading and minmass with BDT discriminant strategies are usually
used for the VBS signal searching studies. For example, Reference [12] ex-
ploits the minmass with BDT discriminant selection to find the VBS signals.
Therefore, it is helpful to calculate the significance of the 2leading and min-
mass with BDT discriminant strategies as the performance baseline of VBS
searching compared to the additional q/g tagging selection discussed in the
later sections.
There are 1059 VBS signal events, 297845 W+jet events, and 235519 tt̄
events, respectively for 2leading strategy selections.
For minmass strategy, there are 1419 VBS signal events, 454939 W+jet
events, and 409285 tt̄ events.
The results are shown in the first column in Table 5.8, where the best signif-
icances at 10% background systematic uncertainty are 0.78 and 0.73 for the
2leading and minmass strategies, respectively. The significance drops when
the systematic uncertainty increases as expected. Comparing the 2leading
and minmass with BDT discriminant, it is found that the 2leading strategy is
always better than the minmass no matter what the systematic uncertainty
is.

5.3.3 q/g tagging Improving Limit

The BDT discriminant is a powerful tool for separating VBS signal events
from background events. However, the high-level input variables limit its
improvement to another level. Using the q/g tagging model, especially neu-
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ral network q/g tagging, provides another way to enhance the signals by
inputting the lower-level information in the ATLAS.
To define the improving limit of q/g tagging, it is necessary to investigate how
many gluons and quarks are in each event when the 2leading and minmass
selections are imposed. Figure 5.9 shows the number of |η| < 2.1 gluons for
2leading and minmass selections. |η| < 2.1 gluons are counted since the q/g
tagging models in this thesis can only be utilized at |η| < 2.1 region. There
are four gluons at most from two signal small-R jets and two tagging small-R
jets.
In order to estimate the limit of the q/g tagging in this study, suppose that
quarks and gluons can be separated perfectly. In other words, only zero
|η| < 2.1 gluon events are selected in this situation. Then, applying the
BDT discriminant to only none gluon events to estimate the q/g tagging im-
proving limit. The significance estimation of perfect q/g tagger is shown in
Table 5.8 when the q/g tagging differentiates quarks and gluons with 100%
efficiency.
Applying perfect q/g tagging to the 2leading and minmass with BDT discrim-
inant, the significance improved obviously no matter how large the systematic
uncertainty is. This indeed demonstrates the potential of q/g tagging. On
average, the 2leading and minmass with BDT discriminant have 56.9% and
76.4% improvement by perfect q/g tagging, respectively.
On the other hand, q/g tagging seems to work better on the minmass strat-
egy than the 2leading strategy. Although the 2leading is better than the
minmass with only BDT discriminant, the minmass strategy has more re-
markable improvement and larger significance after the perfect q/g tagging
is imposed.

5.3.4 q/g tagging Improvement

This section will show the improvement of 1-lepton VBS searching after ap-
plying the Energy Flow and BDT q/g models trained in Chapter 4.
The threshold cuts of q/g tagger output and BDT discriminant are calculated
separably. In the first step, the BDT discriminant is applied to the 2leading
and minmass strategies to obtain the outputs. Secondly, Energy Flow and
BDT q/g taggers are applied to the 2leading and minmass strategies to get
the output distribution. The output distribution of the BDT discriminant
is displayed in Figure 5.5. And the output distribution of Energy Flow and
BDT q/g tagging models are shown in Figure 5.7 and Figure 5.8, respectively.
Finally, drawing a two dimensional significance plot, which x axis is BDT
discriminant output and y axis is q/g tagger output. The two dimensional
significance plots of Energy Flow and BDT taggers with 10%, 20% and 30%
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Figure 5.9: The number of gluons each event for the VBS (left) and the
background (right) MC samples for 2leading (top) and minmass (bottom)
strategies. The VBS signal sample has the most number for non-gluon events,
while the W+jet and tt̄ samples dominate at 1-gluon event. Therefore, it is
useful to separate signals and backgrounds by applying the q/g tagging.

systematic uncertainty are shown in Appendix D. The tremendous signifi-
cance is obtained by these two dimensional significance plots, summarized in
Table 5.8.
Compared to the baseline significance calculated in Section 5.3.2, it is found
that all strategies improved after the q/g tagging models were applied. The
significances of the neural 2leading and neural minmass strategies are im-
proving by approximately 3.9% and 8.2%, respectively on the average of all
systematic uncertainty assumptions. On the other hand, the BDT 2leading
and BDT minmass strategies improve by about 0.6% and 5.1%.
Taking 10% background systematic uncertainty for example, the significances
of the neural 2leading and neural minmass are 0.81 and 0.77, respectively,
which are better than the baseline significance discussed in the previous sec-
tion. The significances of the BDT 2leading and BDT minmass are 0.78 and
0.73. From the comparison between the significance of Energy Flow and BDT
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q/g tagger, the Energy Flow model performs better than BDT q/g tagging
model. The ability to input low-level variables gives the neural network q/g
tagging models having more space for improvement.
The improvement rate shows that the improving amplitude of the minmass
strategy is more significant than the 2leading strategy, which is consistent
with the perfect q/g tagging discussion. This indicates that the minmass
strategy using q/g tagging has a larger potential for better VBS signal search-
ing.
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Table 5.8: A summary of all strategies performance discussed in Section
5.3.2 (baseline), 5.3.3 (perfect q/g tagger) and 5.3.4 (Energy Flow and BDT
models). The uncertainty of W+jet and tt̄ includes both systematic and sta-
tistical uncertainties. All strategies are applied with the BDT discriminant.
The significance is calculated with both the statistical and systematic error.
Selection stratgy Bkg systematic Signal W+jet tt̄ Significance

uncertainty

10% 44 42±14 128±38 0.78
2leading 20% 44 42±14 128±38 0.58

30% 37 30±14 99±43 0.40
10% 45 57±18 103±39 0.73

minmass 30% 45 57±20 103±43 0.57
30% 45 57±24 103±49 0.39

2leading 10% 65 14±6 134±42 1.11

with perfect q/g tagger 20% 65 14±7 134±48 0.91
30% 60 13±7 114±51 0.70

minmass 10% 71 13±7 168±42 1.19

with perfect q/g tagger 20% 53 3±4 99±37 0.97
30% 53 3±4 99±43 0.76
10% 48 46±13 148±41 0.81

neural 2leading 20% 48 46±15 148±48 0.60
30% 34 18±10 89±40 0.42
10% 65 83±22 242±58 0.77

neural minmass 20% 35 33±15 79±34 0.59
30% 22 1±1 40±23 0.44
10% 75 88±18 366±70 0.79

BDT 2leading 20% 44 42±15 128±44 0.58
30% 37 30±14 99±43 0.40
10% 44 51±17 83±36 0.73

BDT minmass 20% 31 32±15 59±27 0.58
30% 28 26±14 50±27 0.44



Chapter 6

Conclusions

The Vector Boson Scattering (VBS) is the highly critical process to probe
the properties of the electroweak interaction in the Standard Model. The
cross-section of the VBS process is highly sensitive to electroweak symmetry
breaking[47] which is still one of the mysteries in physics. Additionally, the
VBS process has the same leading order term of Feynman diagrams with
Higgs bosons, indicating that studying the VBS process is an indirect way
to investigate the Higgs boson properties. With LHC which can operate the
particle collisions at center-of-mass energy

√
s = 13 TeV, the physicists can

examine the vector boson scattering and electroweak symmetry breaking is-
sues. 1-lepton semileptonic VBS process is studied to validate q/g tagging
trained in this thesis. The MC samples are scaled to the integrated luminos-
ity of 139 fb−1 corresponding to the Run II data from 2015 to 2018 at the
LHC.

1-lepton semileptonic VBS process decays through WZ and WW channels.
The W boson decays into lepton and neutrino in the first and second chan-
nels, while the other vector boson decays into two quarks. Combing with the
tagging quark originating from the colliding protons, there are totally four
quarks. Hence, it is essential to utilize the q/g tagging to discriminate the
quarks and gluons which are the main backgrounds.

The different properties between quarks and gluons are helpful to separate
them. For example, ntrack, trackwidth and trackC1 are the usually used vari-
ables in the Boosted Tree Decision (BDT) q/g tagging in the past. However,
the BDT q/g tagger limitation implies that the input variables will lose some
information during the calculation from the low-level variables such as η, pT,
etc. Neural network q/g tagging models are considered to solve this kind of
issue in this study. Three types of neural network models are compared in

72
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Chapter 4, which are MLP, CNN and Pointwise q/g tagging models. As a
result, the Energy Flow and Deep Sets models belonging to Pointwise models
have the best performance among all q/g tagging models. The gluon rejection
rate of the Energy Flow and Deep Sets models improved approximately 10%
than the conventional BDT q/g tagging model at the 80% quark efficiency
rate. Moreover, both Energy Flow and Deeps Sets models are applied to
different multijet MC to examine the IRC-safe. The result is that the gluon
rejection rate differences between trained on the different MC samples with
Energy Flow are smaller than Deep Sets. Also, it is found that no matter
the models are trained in the Pythia or Herwig MC samples, the separation
of quarks and gluons always works better in the Pythia MC samples. This
might indicate that the difference between these two MC samples is more
prominent, which is a vital issue for future works.

The Energy Flow and BDT q/g tagging models are examined in the 1-lepton
semileptonic VBS process. There are two selection strategies for the signal
quarks considered for the 1-lepton semileptonic VBS process, the 2leading
and minmass selections. The BDT discriminant discussed in Section 5.2.2
enhances both strategies and creates a baseline for the previous research.
The improving limit of q/g tagging is investigated. The 2leading and min-
mass strategies with BDT discriminant with perfect q/g tagging can have
the maximum improvement of 56.9% and 76.4% compared to the baseline
significance calculated from the non-q/g tagging cases. This is exciting since
the q/g tagging still has the space to develop. The improving amplitude of
the neural 2leading and neural minmass is approximately 3.9% and 8.2%,
respectively, indicating that the q/g tagger seems to perform more potent in
the neural minmass strategy. The best performance obtained in this thesis
is neural 2leading, which its significance is 0.81. Another thing found is that
the backgrounds seriously affect the significance and fewer backgrounds give
a better performance. This results in better performance occurring at the
strict BDT discriminant and q/g tagger threshold cuts that lower the number
of background events.

Significant improvement of quark/gluon separation with the q/g tagging
models is examined by the 1-lepton VBS process at the ATLAS in this pa-
per. Since the improvement of q/g tagging models in this study still has
space from the improving limit, it is worth researching different q/g tagging
models, especially the neural network models. Furthermore, improving the
q/g tagging models with additional low-level input variables and tuning the
hyperparameter is perspective research for future works.



Appendix A

Input and output of
Quark/Gluon Tagging Models

Figure A.1, A.2 and A.3 shows the input variables in the BDT q/g tagging
model.

Figure A.4 compares the difference between the testing on Pythia and Herwig
MC samples.
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Appendix B

The distributions for 1-lepton
semileptonic preselection

Figure B.1 and B.2 show the distributions of the Emiss
T and the lepton pT.

Figure B.3 and B.4 show the distributions of the mjjj of 2leading and minmass
strategies.
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Appendix C

Input Variable of BDT
Discriminant

Figure C.1, C.2, C.3 and C.4 displays the BDT discriminant inputs with the
2leading strategy selection.

Figure C.5, C.6, C.7 and C.8 shows the BDT discriminant inputs with the
minmass strategy selection.
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C.2 minmass input variables
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Appendix D

Tuning BDT discriminant and
q/g tagger

The z axis represents the significance after the thresholds are applied. D.1
and D.2 shows the neural 2leading and BDT 2leading two dimensional signif-
icance plots. D.3 and D.4 shows the neural minmass and BDT minmass two
dimensional significance plots, respectively. There are some gaps in the 2D
plots, such as the place of BDT = 0.13 and EnergyFlow = 0− 0.8 in Figure
D.1. The reason for these gaps is considered from the deficiency of statistics.

D.1 Neural 2leading
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D.3 Neural minmass
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D.4 BDT minmass
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Appendix E

Order Stragety

Unlike 2leading and minmass selection strategies, order strategy selects tag-
ging jet and signal jet pairs by the magnitude of Energy Flow tagger output.
In the first step, choose the largest four Energy Flow output jets. And then,
select the largest invariant mass jet pair as a tagging jet pair, and the re-
maining two jets are chosen as a signal pair. After picking up the tagging
and signal jet pairs, the preselection is performed as Table 5.5.
To obtain the best significance, A threshold of the Energy Flow and BDT
discriminant outputs is investigated, same as neural 2leading and neural min-
mass strategies. The systematic uncertainty is determined with 10%, 20%
and 30% to study the different situations.
The significance is shown in Table E.1 and the two dimensional plot of En-
ergy Flow and BDT discriminant output is displayed in Figure E.1, E.2 and
E.3 with 10%, 20% and 30% systematic uncertainty. Compared to the sig-
nificance baseline in Section 5.3.2, it is found that the neural order selection
strategy discussed in this Appendix performs worse than the 2leading with
only the BDT discriminant strategy. This indicates that using q/g tagger
output to select tagging and signal jet pairs is still not a suitable method
and shows the worse efficiency compared to 2leading and minmass selection
strategies.
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Table E.1: A summary of the order strategy significance.
Selection Stratgy Bkg Systematic Signal W+jet tt̄ Significance

Uncertainty
10% 59 68±16 208±51 0.754

order 20% 59 68±16 208±51 0.529
30% 24 8±6 59±24 0.363
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