Supersymmetry after LHC Run 1

Brian Petersen CERN

Outline

Supersymmetry What and why?

- Searching for Supersymmetry at the LHC Brief intro to LHC and the ATLAS experiment and how we search for Supersymmetry there
- Status of Run-1 Supersymmetry searches Where did we look? What did we find? Will focus mostly on some of the latest results
- Outlook for upcoming data-taking What can we expect for 2015 and beyond

Standard Model

4

2013 NOBEL PRIZE IN PHYSICS François Englert Peter W. Higgs

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs

② ③ The Nobel Foundation, Photo: Lovisa Engblor

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

Standard Model Complete?

Leptons

Standard Model Complete?

Leptons

7

Dark Matter

Strong evidence in astrophysics for presence of dark matter Galaxy rotational curves

Dark Matter

Strong evidence in astrophysics for presence of dark matter

Galaxy rotational curves

Gravitational lensing

Combined cosmological fit

Cosmic microwave background

Possible Sources of Dark Matter

Ordinary non-luminous matter?

- A lot of the 5% ordinary matter is not luminous, but present in form of gas etc.
- Cannot account for non-baryonic DM

Neutrinos?

 Can only have small contribution due to large-scale structure formation

Modifying gravity

 Very difficult to explain all the different measurements

Axions?

- Particle resulting from the Peccei-Quinn solution to the strong CP problem
- O(keV) mass good DM candidate

WIMPs?

- Weakly Interacting Massive Particle
- EW-scale (100-1000 GeV) gives right DM density

Other exotic particles

 Many other options have been proposed 10

Possible Sources of Dark Matter

Ordinary non-luminous matter?

- A lot of the 5% ordinary matter is not luminous, but present in form of gas etc.
- Cannot account for non-baryonic DM

Neutrinos?

 Can only have small contribution due to large-scale structure formation

11

Modifying gravity

 Very difficult to explain all the different measurements

Axions?

- Particle resulting from the Peccei-Quinn solution to the strong CP problem
- O(keV) mass good DM candidate

WIMPs?

- Weakly Interacting Massive Particle
- EW-scale (100-1000 GeV) gives right DM density

Other exotic particles

 Many other options have been proposed

Supersymmetry

Supersymmetry (SUSY) is a favored source for WIMP

- New symmetry between bosons and fermions
- For every SM particle, introduces partner with Δ spin= $\frac{1}{2}$

Standard particles

SUSY particles

Supersymmetry

Supersymmetry must be broken symmetry

- If unbroken, would have same mass as SM particles
- Introduce soft breaking terms
- In minimal supersymmetry (MSSM) this introduces 124 new parameters

R-parity

- MSSM introduces baryon and lepton number violating processes
- Protect against proton decays by introducing new discrete symmetry

$R = (-1)^{2S+3B+L} = +1$ (-1) for SM (SUSY) particles

- Implies SUSY particles always produced in pairs
- Lightest SUSY particle (LSP) has to be stable
 This is an excellent Dark Matter candidate

Supersymmetry Motivation

Dark matter is not the original or only motivation for SUSY Also provides solutions to several particle theory issues

Hierarchy Problem

Very large loop corrections to Higgs mass in any SM extension

Supersymmetry Motivation

Dark matter is not the original or only motivation for SUSY Also provides solutions to several particle theory issues

Hierarchy Problem

- Very large loop corrections to Higgs mass in any SM extension
- SUSY can stabilize Higgs boson mass without extreme fine-tuning

Requires SUSY particles not to be much heavier, O(TeV), than the Standard Model particles

Natural SUSY

Not all SUSY particles need to be light Focus on the ones that have to be light ("Natural SUSY")

16

Supersymmetry Motivation

Gauge-coupling Unification

- Couplings run in SM, but do not quite meet as one would expect in a Grand Unified Theory (GUT)
- SUSY changes running of couplings to allow unification of couplings at GUT scale

Again requires SUSY at TeV scale

Searching for Supersymmetry at the LHC

Large Hadron Collider

CERN Prévessin

ATLAS

ALICE

27 km proton-proton collider at CERN

CMS

Large Hadron Collider Goals Electroweak Symmetry Breaking Beyond SM Physics Searches Matter-antimatter Asymmetry

CERN Prévessin

ALICE

The ATLAS Experiment

21

Luminosity

Critical LHC parameter is delivered luminosity: Rate = Cross-section x Efficiency x Luminosity

LHC – A Paper Factory

~400 papers for the first 3 years of data-taking In addition more than 600 preliminary results

Searching for SUSY at the LHC

Aissinc

nei

Wide ranging searches for SUSY⁸⁰⁰

- Many different SUSY models with different masses and decays
- Requires to look for many different signatures

Jet

Jet

 \tilde{g}

 Always pair produced and typically more energetic than SM with multiple decay products

A typical SUSY decay chain:

 $ilde{\chi}^0_2$

Leptons

Key signature for all SUSY models with a stable LSP (i.e. Dark Matter candidate)

SUSY Analysis and Backgrounds

Typical ATLAS supersymmetry search:

- Count events that has a characteristic SUSY signature and is unlikely to be due to Standard Model processes
 - More than ... jets and/or leptons
 - Measured energy above ... GeV
 - Missing transverse energy above ... GeV

Are there more events than expected from the Standard Model?

Estimating Backgrounds

Each analysis typically has multiple source of backgrounds Estimation of each depends on the nature of the background

Reducible Background – Example

Jet mis-measurement can give large fake E_T^{miss} Makes E_T^{miss} -less multi-jet or Z \rightarrow II events look like signal

Jet-smearing method

- Jet-response function derived from MC and adjusted to match data in di-jet and three-jet events
- Select low E_T^{miss} events in data and smear the jets with a response function

Provides good estimate of fake E_T^{miss} background as seen in control-region

27

Irreducible Backgrounds

SM backgrounds with real $E_{T}^{\mbox{\tiny miss}}$

such as $Z \rightarrow vv$ and $W \rightarrow Iv$

Rely (partly) on simulation

- Small contributions taken directly from simulation
- Larger one normalized to data in signal free region ans extrapolated to signal region

$$N_{SR}^{i} = \frac{N_{SR}^{i,MC}}{N_{CR}^{i,MC}} (N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,MC}) = T(N_{CR}^{i,data} - \sum_{j=process} N_{CR}^{j,MC}) = T(N_{CR}^{i,MC}) = T(N_{CR}^{i,$$

Minimize uncertainty on background

- Systematic uncertainty on extrapolation factor from both theory (modelling) and experimental effects (efficiencies, etc.)
- In some cases can derive extrapolation factor from data or at least correct using data to reduce systematic uncertainty

 $N_{CR}^{j,MC}$)

Closeness to signal region

Background Validation

LHC Supersymmetry Search Results

Short Version

Did We Really Look Everywhere?

LHC SUSY Searches

At LHC can search for production for almost all SUSY particles, but with different sensitivity as production cross-sections vary

LHC SUSY Searches

At LHC can search for production for almost all SUSY particles, but with different sensitivity as production cross-sections vary

Inclusive 0-Lepton Analysis

Work-horse for searches for squarks/gluinos

2000

1500

2500

3000

3500

m_{eff}(incl.) [GeV]

4000

0.5

0

500

1000

Inclusive selection

- Between 2-6 jets with p₇>60 GeV
- $\Delta \phi(j_i, E_{\tau}^{\text{miss}}) > 0.4(0.2 \text{ for } i > 3)$
- No leptons with p_⊥>10 GeV
- Large E_{τ}^{miss} wrt m_{eff} (>0.15 0.4)
- Signal region split by #jets and m with two SRs dedicated to $W \rightarrow jets$

Inclusive 0-Lepton Analysis

Inclusive 0-Lepton Analysis Results

With no signals observed, proceed to set limits on SUSY models

Limit setting procedure

- For each SUSY model calculate expected number of events in each signal region and any leakage to control regions
- Obtain p₀ from simultaneous fit to the signal and control regions
- Limit quoted from best expected signal region
- Typically do this in scan over several SUSY model parameters

Inclusive 0-Lepton Analysis Results⁴²

With no signals observed, proceed to set limits on SUSY models Limit setting procedure

Simplified Model Limits

Present results in form of simplified models

Simplified Model Limits

45 New Conclusive 1/2-Lepton Analysis Longer decay chains gives 200 GeV χ_1^{\pm} Data ATLAS more possible signatures Standard Model 60 √s=8 TeV, 20.3 fb⁻¹ Top Quarks hard 1L e/u Events / 1/2-lepton analysis V+jets 50- 3-iet SR Fake Leptons Dibosons 1 or 2 leptons with p_{T} >6 GeV, split in $\tilde{g}\tilde{g}$ 1-step, m(\tilde{g} , $\tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{1}^{0}$)= (1025, 545, 65) GeV hard (pT>25 GeV) and soft (6<pT<25 GeV) 30 3, 5 and 6 jet signal regions (also 2 jets for 2-lepton) 20 Large transverse mass, $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}(1 - \cos[\Delta \phi(\vec{\ell}, p_{\rm T}^{\rm miss})])}$ 10 to suppress W and top bkg Simultaneous fit to multiple bins in m_{eff} 800 900 1000 1100 1200 1300 1400 1500 1600 m^{incl} [GeV] or E_{T}^{miss}/m_{eff} to increase sensitivity Scan over chargino mass-splitting \widetilde{q} - $\widetilde{q} \rightarrow qqWW\widetilde{\chi}^{0}\widetilde{\chi}^{0}$, m($\widetilde{\chi}^{0}$) = 60 GeV \widetilde{q} - $\widetilde{q} \rightarrow qqWW\widetilde{\chi}_{_{4}}^{^{0}}\widetilde{\chi}_{_{4}}^{^{0}}$, $x = \Delta m(\widetilde{\chi}_{_{4}}^{^{\pm}},\widetilde{\chi}_{_{4}}^{^{0}})/\Delta m(\widetilde{q},\widetilde{\chi}_{_{4}}^{^{0}}) = 1/2$ 1000 [GeV] 900 800 800 $\Delta m(\widetilde{\chi}_1^{\pm},\widetilde{\chi}_1^0)/\Delta m(\widetilde{q},\widetilde{\chi}_1^0)$ Observed limit (±1 σ^{SUS)} Observed limit (±1 $\sigma_{theorem}^{SUS}$ ATLÁS ATLAS 1.4 --- Expected limit $(\pm 1 \sigma_{oxp})$ - Expected limit $(\pm 1 \sigma_{ove})$ Cómbination Combination s=8 TeV, 20 fb⁻¹ Hard 1-lepton obs./exp. Hard 1-lepton obs./exp. s=8 TeV, 20 fb⁻¹ 1.2 Soft 1-lepton obs./exp. Soft 1-lepton obs./exp. PRD 86 (2012) 092002 arXiv:1501.03555 All limits at 95% CL PRD 86 (2012) 092002 700 arXiv:1501.03555 All limits at 95% CL Ш 600 Increased 0.8 × 500 sensitivity 0.6 400 300 0/4

0.2

0

300

400

500

600

700

800

900

1000

200

100

400

600

800

1000

1200

 $m(\tilde{q})$ [GeV]

m(q̃) [GeV]

1100

1200

Scalar Charm Search

Much weaker squark limit if only one light light-flavor squark (1/8σ)

- Cannot have any light-flavor squark on its own as it would violate flavor-physics constraints
- However, scharm is not significantly constrained from flavor physics and could be lighter than others

New, dedicated scharm search

- Search for direct decay to charm
- Signal is two high-p_τ charm jets, high E_τ^{miss} and no leptons
- Use dedicated charm-tagger for jets to suppress other jet types

Scalar Charm Search

• Kinematic selection using contransverse mass m_{CT} and charm pair mass m_{cc} $m_{CT}^2(j_1, j_2) = [E_{T,1} + E_{T,2}]^2 - [p_{T,1} - p_{T,2}]^2$ $E_T = \sqrt{p_T^2 + m^2}$ $m_{CT}^{max} = \frac{m^2(\tilde{c}) - m^2(\tilde{\chi}_1^0)}{m(\tilde{c})}$

~100 GeV improvement in sensitivity w.r.t. inclusive search

Limits on Gluino Production

Even stronger limits on gluinos

- Several quarks(=jets) in each decay
- Inclusive 0-lepton analysis sensitive up to 1.3 TeV for direct gluino decays

Limits on Gluino Production

Even stronger limits on gluinos

- Several quarks(=jets) in each decay
- Inclusive 0-lepton analysis sensitive up to 1.3 TeV for direct gluino decays
- For one-step decay, good complementarity with 1-lepton analysis

Limits on Gluino Production

Many more decays possible for gluinos

Decays through stop

- If scalar top lighter than other squarks, gluinos will decay to multiple top quarks
- Provides a very rich final state:
 4-bjets, up to 4 leptons, up to 12 jets
- Many SUSY searches sensitive to this channel
- Best limit from a search for 3-bjets:
 Gluino heavier than ~1.4 TeV

15 GeV

Excess in Z+jets Final-state

500

Observe an excess in data:

- 3σ significance in ee channel
- 1.7σ in $\mu\mu$ channel
- 3σ significance when combining the two channels

Observed events and expected backgrounds

Channel	SR-Z ee	SR-Z $\mu\mu$	SR-Z same-flavour combined
Observed events	16	13	29
Expected background events	4.2 ± 1.6	6.4 ± 2.2	10.6 ± 3.2
Flavour-symmetric backgrounds	2.8 ± 1.4	3.3 ± 1.6	6.0 ± 2.6
Z/γ^* + jets (jet-smearing)	0.05 ± 0.04	$0.02^{+0.03}_{-0.02}$	0.07 ± 0.05
Rare top	0.18 ± 0.06	0.17 ± 0.06	0.35 ± 0.12
WZ/ZZ diboson	1.2 ± 0.5	1.7 ± 0.6	2.9 ± 1.0
Fake leptons	$0.1^{+0.7}_{-0.1}$	$1.2^{+1.3}_{-1.2}$	$1.3^{+1.7}_{-1.3}$

Excess of events only in signal region:

GeV

Events / 2.5

2

200

250

300

350

400

450

 E_{τ}^{miss} [GeV]

500

200

250

300

350

400

450

 E_{τ}^{miss} [GeV]

500

Excess in Z+jets Final-state

Observed events and expected backgrounds Observe an excess in data: Channel SR-Z ee SR-Z $\mu\mu$ SR-Z same-flavour Observed events 16 13 3σ significance in ee channel Expected background events 4.2 ± 1.6 6.4 ± 2.2 1.7σ in $\mu\mu$ channel Flavour-symmetric backgrounds 2.8 ± 1.4 3.3 ± 1.6 $0.02^{+0.03}_{-0.02}$ Z/γ^* + jets (jet-sp) 0.05 ± 0.04 0.07 ± 0.05 0.35 ± 0.12 0.18 ± 0.06 0.17 ± 0.06 3σ significance when 1.7 ± 0.6 2 + 0.5 $1.2^{+1.3}_{-1.2}$ Largest excess seen in combining the two chan LHC SUSY searches GeV Data ATLAS n signal region: ATLAS _12 ū Standard Model Flavour Symmetric s = 8 TeV, 20.3 fb⁻¹ N s = 8 TeV, 20.3 fb⁻¹ Given large number of Other Backgrounds SR-Z μμ SR-Z ee •••••• m(g),u=(700,200)GeV_ 10 searches performedm(g),µ=(900,600)GeV - Data arXiv:1503.03290 Flavour Symmetric 3σ statistical fluctuation Z/γ^* + jets ass window Other Backgrounds is not unexpected Total SM arXiv:1503.03290 82 84 86 88 90 92 94 96 98 100 82 84 86 88 90 92 94 96 98 100 m_{II} [GeV] m_{II} [GeV] - N_{exp}) / σ_{tot} Events / 25 GeV 0 11 0 21 0 ee+uu GeV ee Data ATLAS ATLAS # Standard Model Standard Model 52 Flavour Symmetric 10- s = 8 TeV, 20.3 fb⁻¹ Flavour Symmetric s = 8 TeV. 20.3 fb⁻¹ Events / : Other Backgrounds Other Backgrounds 10 SR-Z ee SR-Z uu Z sdo m(q),u=(700,200)GeV •• m(q), u=(700, 200)GeV m(q),u=(900,600)GeV m(q), u=(900,600)GeV. CRT VRTZ VRTZ VRT VRT VRT VRT> (high E_{isr}^{misr} (high H) ^{(high} H (high E^{miss} 6

53

combined

 10.6 ± 3.2

 6.0 ± 2.6

 2.9 ± 1.0

SR

 $1.3^{+1.7}_{-1.3}$

29

New

Does CMS See Excess?

Recent similar search in CMS:

- Similar Z→II selection
 Counts in bins of E₁^{miss}
- ≥2 (or ≥3) jets above 40 GeV
- No selection on H_⊤ (sum of jet p_⊤) resulting in increased Z→II bkg

≥2 jets

$E_{\rm T}^{\rm miss}$ (GeV)	100-200	200–300	>300	
DY background	336 ± 89	28.6 ± 8.6	7.7 ± 3.6	
FS background	868 ± 57	45.9 ± 7.3	5.1 ± 2.3	
Total background	1204 ± 106	74.5 ± 11.3	12.8 ± 4.3	
Data	1187	65	7	
GMSB signal yields				
$m_{\tilde{g}} = 900, m_{\tilde{\chi}_1^0} = 150$	22.1 ± 0.4	11.1 ± 0.3	7.2 ± 0.2	
$m_{\tilde{g}} = 1100, m_{\tilde{\chi}_1^0} = 800$	1.1 ± 0.04	1.6 ± 0.05	7.6 ± 0.1	
≥3 jets				
$E_{\rm T}^{\rm miss}$ (GeV)	100-200	200-300	>300	
DY background	124 ± 33	12.7 ± 3.8	3.2 ± 1.8	
FS background	354 ± 28	26.5 ± 5.4	2.0 ± 1.4	
Total background	478 ± 43	39.2 ± 6.6	5.3 ± 2.3	
Data	490	35	6	
GMSB signal yields				
$m_{\tilde{g}} = 900, m_{\tilde{\chi}_1^0} = 150$	22.0 ± 0.4	11.0 ± 0.3	7.1 ± 0.2	
$m_{\sim} = 1100 \ m_{\sim 0} = 800$	11 ± 0.04	15 ± 0.05	7.4 ± 0.1	

No excess seen by CMS However, only ~30% overlap with ATLAS selection

New CMS Excess in Dilepton Search

CMS excess in dilepton edge search:

- Decay of heavy neutralino through slepton or off-shell Z gives triangular II mass distribution with characteristic edge and kinematic bound
- Split in central leptons (|η|<1.4) and forward leptons (|η|>1.6)
- 2 jets and E_{T}^{miss} >150 GeV, or 3 jets and E_{T}^{miss} >100 GeV
- Fit to "edge" shape across m_µ and count in 3 m_µ bins
- See 2.6 σ excess at low m_µ in central case

	Low-mass		On-Z		High-mass	
	Central	Forward	Central	Forward	Central	Forward
Observed	860	163	487	170	818	368
Flavor-symmetric	$722\pm27\pm29$	$155\pm13\pm10$	$355\pm19\pm14$	$131\pm12\pm8$	$768\pm28\pm31$	$430\pm22\pm27$
Drell–Yan	8.2 ± 2.6	2.5 ± 1.0	116 ± 21	42 ± 9	2.5 ± 0.8	1.1 ± 0.4
Total estimated	730 ± 40	158 ± 16	471 ± 32	173 ± 17	771 ± 42	431 ± 35
Observed-estimated	130^{+48}_{-49}	5^{+20}_{-20}	16^{+37}_{-38}	-3^{+20}_{-21}	47^{+49}_{-50}	-62^{+37}_{-39}
Significance	2.6σ	0.3σ	0.4σ	< 0.1 \sigma	0.9 σ	$< 0.1 \sigma$

Dilepton Edge in ATLAS

ATLAS also has edge search:

 One set of selection almost identical to CMS

New <

 Additional SRs split in b-jets and no bjets and minimum 2 vs 4 jets

Below-Z (20 < $m_{\ell\ell} < 70$ GeV)	SR-loose ee	SR-loose $\mu\mu$	SR-loose same-flavour combined
Observed events	509	624	1133
Expected background events	$510\pm20\pm40$	$680\pm20\pm50$	$1190 \pm 40 \pm 70$
Flavour-symmetric backgrounds	$490 \pm 20 \pm 40$	$650 \pm 20 \pm 50$	$1140 \pm 40 \pm 70$
Z/γ^* + jets	$2.5 \pm 0.8 \pm 3.2$	$8 \pm 2 \pm 5$	$11 \pm 2 \pm 7$
Rare top	$0.3 \pm 0.0 \pm 0.0$	$0.4 \pm 0.0 \pm 0.0$	$0.7 \pm 0.0 \pm 0.0$
WZ/ZZ	$1.1 \pm 0.3 \pm 0.1$	$1.2 \pm 0.2 \pm 0.4$	$2.4 \pm 0.4 \pm 0.4$
Fake leptons	$16 \pm 4 \pm 2$	$23 \pm 5 \pm 1$	$38 \pm 6 \pm 4$

No excess seen in ATLAS

56

New Gluino Limits with Dileptons

Still put limits on gluinos:

- Analysis results interpreted in both simplified models and Generalized gauge mediated supersymmetry models (GGM)
- Limits weakened due to excess in on-Z search

	Dilepton edge	Z+MET
ATLAS	No excess	3.0σ
CMS	2.6σ	No excess

The ATLAS and CMS edge selections are the same (by design) but the Z+MET are different, only ~30% of our events enter the CMS selection

New Gluino Search without E^{miss}

p

q

<u>Search for E_{T}^{miss} less gluino decays:</u>

- If R-parity violated can have decays to just jets
- Search uses high jet multiplicity (≥6,7 jets) or large total (fat-)jet mass
- Dominant background from SM multi-jets estimated using templates from lower jet multiplicity

LHC SUSY Searches

At LHC can search for production for almost all SUSY particles, but with different sensitivity as production cross-sections vary

3rd Generation Squark Searches

In natural SUSY at least one stop light (m< 1 TeV) Have been a major focus of SUSY searches in last 3 years

3rd Generation Squark Searches

In natural SUSY at least one stop light (m< 1 TeV) Have been a major focus of SUSY searches in last 3 years

3rd Generation Squark Searches

In natural SUSY at least one stop light (m< 1 TeV) Have been a major focus of SUSY searches in last 3 years

Stop Limit from tt cross section

• If $m_{\tilde{t}} \sim m_{ton}$, then it is reconstructed as top, increasing cross section 177.3^{+11.5} pb (Precise NNLO+NNLL SM prediction: TeV)

ATLAS tt dilepton cross section measurement

\s = 8 TeV, 20.3 fb⁻¹

ATLAS

1

2

Data 2012

Wt

Z+iets

Diboson Mis-ID lepton

Powheg+PY

Eur.Phys.J. C74 (2014) 3109

MC@NLO+HW Alpgen+HW

≥3

tt Powhea+PY

63

Stop Limit from tt cross section

95%

$\underline{m}_{\underline{t}} \sim \underline{m}_{top}$ excluded

- σ_{ii} ~40 pb at m_i=175 GeV, CL limit on signal strength μ σ_{ii} ~20 pb at m_i=200 GeV
- Selection efficiency is very similar to tt for right-handed t
- Exclude light stop from m, to 183 (177) GeV before(after) accounting for 15% uncertainty on σ_{ii}
- Limit assumes $BF(\tilde{t} \rightarrow t \tilde{\chi}_1^0) = 100\%$
- Weakens to 175 GeV if stop is left-handed
- Little dependence on the neutralino mass

New Stop Limit from tt Spin Correlation

Consistent with SM prediction:

 $A_{\text{helicity}} = 0.38 \pm 0.04$ $A_{\text{SM}} = 0.318 \pm 0.005$

New Stop Limit from tt Spin Correlation⁶⁶

$\underline{m}_{\tilde{t}} \sim \underline{m}_{top}$ further excluded

- Simultaneous fit to overall σ_{it} and $\Delta \phi(i,j)$ distribution for additional scalar top contribution assuming SM cross section for top
- Exclude light stop from m_t to 197 (191) GeV before(after) accounting for 15% uncertainty on σ_{iff}
- Limit assumes BF($\tilde{t} \rightarrow t \widetilde{\chi}_1^0$)=100% and right-handed stop

 Only slightly weaker limit (few %) for right-handed stop and heavier neutralino

Current Stop Limit Summary

With the additional measurements at top starting to close some of the holes for light stops

67

LHC SUSY Searches

At LHC can search for production for almost all SUSY particles, but with different sensitivity as production cross-sections vary

EW Production Search Program

Comprehensive program

- Search for chargino, neutralino and slepton pair production
- Primarily using leptonic final states either through direct decays to leptons or through W/Z decays
- Dedicated searches with τ 's

p

p

69

EW Production Search Program

Comprehensive program

- Search for chargino, neutralino and slepton pair production
- Primarily using leptonic final states either through direct decays to leptons or through W/Z decays
- Dedicated searches with τ 's

p

p

70

New Search for EW Prod. With Higgs Decay

If $\tilde{\chi}_2^0$ is of wino-type and heavy enough, it will decay through Higgs emission

p

Searched for in three decay modes in association with $\widetilde{\chi}_1^+$ decay

Search Strategy:

 2 signal regions in bb using lepton-E^{miss} transverse mass^{10³} and m_{CT,bb} to suppress
 W+jet and tt backgrounds

p

 \boldsymbol{p}

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

- 2 signal regions in γγ using W+γ transverse mass and Δφ(W,γ) to suppress SM Higgs production
- 6 same-sign lepton signal regions split by flavor and jet multiplicity
- Combine all signal regions for maximal sensitivity

W

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

New Search for EW Prod. With Higgs Decay

 $m_{\widetilde{\chi}_{1}^{\pm}}$ (= $m_{\widetilde{\chi}_{2}^{0}}$) [GeV]

LHC SUSY Searches

At LHC can search for production for almost all SUSY particles, but with different sensitivity as production cross-sections vary

Long-lived SUSY Particles

Long-lived SUSY particles are predicted in wide variety of models: Hidden Sectors, RPV violating decays, Split SUSY, AMSB, GMSB,...

Possible Signatures

- Displaced vertices
- Disappearing tracks
- Non-pointing and delayed photons
- Stopped R-hadrons
- Stable massive particles

Observable signatures depend on lifetime

Long-lived SUSY Particles

Long-lived SUSY particles are predicted in wide variety of models: Hidden Sectors, RPV violating decays, Split SUSY, AMSB, GMSB,...

Possible Signatures

- Displaced vertices
- Disappearing tracks
- Non-pointing and delayed photons
- Stopped R-hadrons
- Stable massive particles

New Stable Massive Particle Search

Massive charged particles leave several distinct signatures:

Energy loss ($\beta\gamma$) measured by pixel detector

100.0 / 0.004

- Long time-of-flight measured by calorimeters and muon system
- With momentum measurement get mass estimate: $m = p/(\beta\gamma)$

<u>Search strategy:</u>

- **Reconstruct** particles with $0.2 < \beta < 0.95$
- Determine mass from β measured in muon and calorimeters
- **Confirm selection** using pixel energy loss
- Either require two loose heavy particles or one tightly selected
- Optimize for different long-lived particle production scenarios

500

m₁ [GeV]

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

Full List of Results

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt [\mathbf{f}]$	D ⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \\ \widetilde{q}\widetilde{q}\gamma, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \text{ (compressed)} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\widetilde{q}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qq\widetilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\gamma)\widetilde{\chi}_{1}^{0} \\ GMSB (\widetilde{\ell} \text{ NLSP}) \\ GGM (bino \text{ NLSP}) \\ GGM (bino \text{ NLSP}) \\ GGM (mino \text{ NLSP}) \\ GGM (higgsino-bino \text{ NLSP}) \\ GGM (higgsino-bino \text{ NLSP}) \\ GGM (higgsino \text{ NLSP}) \\ GFavitino \text{ LSP} \end{array} $	$\begin{matrix} 0 \\ 0 \\ 1 & \gamma \\ 0 \\ 2 & e, \mu \\ 1-2 & \tau + 0-1 & \ell \\ 2 & \gamma \\ 1 & e, \mu + \gamma \\ \gamma \\ 2 & e, \mu & (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20 20.3 20.3 4.8 4.8 5.8 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
$\frac{3^{rd}}{\tilde{g}}$ gen.	$\begin{split} \tilde{g} &\rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{split}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{s} 1.25 TeV $m(\tilde{x}_1^0) < 400 \text{ GeV}$ \tilde{s} 1.1 TeV $m(\tilde{x}_1^0) < 350 \text{ GeV}$ \tilde{s} 1.34 TeV $m(\tilde{x}_1^0) < 400 \text{ GeV}$ \tilde{s} 1.3 TeV $m(\tilde{x}_1^0) < 300 \text{ GeV}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \to b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \to t \tilde{\chi}_{1}^{\pm} \\ \tilde{h}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to W b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to W b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \to c \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \to \tilde{t}_{1} + Z \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0-1 \ e, \mu \\ 0 \\ 1 \\ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets 1-2 <i>b</i> ono-jet/ <i>c</i> -t 1 <i>b</i> 1 <i>b</i>	Yes Yes Yes Yes Yes tag Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{\text{L,R}} \tilde{\ell}_{\text{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{\text{L}} \nu \tilde{\ell}_{\text{L}} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\text{L}} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \tau \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\text{R}} \ell \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γγ e,μ,γ 4 e,μ	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{+}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow q q \mu$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_e \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	<i>č</i> 490 GeV m(<i>X̃</i> ⁰)<200 GeV	1501.01325
	$\sqrt{s} = 7$ TeV full data	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} =$ full	8 TeV data	1	0 ⁻¹ 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS SUSY Searches* - 95% CL Lower Limits

full data

partial data

full data

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Outlook for Supersymmetry Searches at the LHC

Future LHC Running

Two major improvements coming at the LHC

- Increase of collision energy from 8 TeV to 13 TeV this year Will eventually increase towards 14 TeV
- Increase in integrated luminosity by O(100) over next ~20 years

Collision Energy Increase

Immediate impact of higher collision energy

- O(50) increase in cross section for heavy gluinos
- O(10) increase in cross section for heavy stop
- Around factor two increase for EW production cross sections
- SM physics backgrounds also increase by factor 2-4

Luminosity Evolution

Expectations for the LHC

- ~10 fb⁻¹ at 13 TeV by end of this year
- ~300 fb⁻¹ at 13-14 TeV by 2022
- ~3000 fb⁻¹ by 2035

Projections for SUSY Searches

Unfortunately, no public projection for 2015 sensitivity

Longer-term sensitivity studied in good detail

- Main backgrounds simulated using parameterized detector response
- Squarks and gluino searches will reach into multi-TeV space
- If no gluinos found by end of LHC, Natural SUSY disfavored
- Already in 2015, expect that just a few fb⁻¹ enough to exceed 2012 exclusions levels, particularly for heavy gluinos

Chargino/Neutralino Searches

Searches for EW production sees little gain from energy increase Large luminosity needed to really push sensitivity

High luminosity projections for direct chargino/neutralino decays

- Use 3-lepton channel as very low background (primarily WZ)
- Even with 300 fb⁻¹ not much possibility of 5σ discovery
- With 3000 fb⁻¹, will approach 1 TeV for exclusion sensitivity, 650-800 TeV discover with a light LSP

Summary

- Extensive search for SUSY at the LHC in Run-1
- Provide comprehensive coverage of SUSY detectable with current LHC luminosity and energy
- No significant signals seen, excluding a big chunk of SUSY with sparticles below 1 TeV
 - do have one signal region at 3σ significance
- Even greater sensitivity in upcoming LHC run(s)

"WIMP Miracle"

If m_x~100 GeV and has weak-scale interaction, the thermal relic density $\Omega_{\rm x} \sim \Omega_{\rm DM}$

Supersymmetry provides a natural WIMP in the lightest supersymmetric particle

Supersymmetry and Dark Matter

LSP mass strongly dependent on SUSY model, but should normally be 100 GeV to 2 TeV to match Dark Matter observation

Dark Matter relic density in 19-parameter phenomenological MSSM

Observed Dark Matter density

All 19 pMSSM model parameters are varied randomly and each model subjected to indirect constraints

Particle Reconstruction and Identification Schematic view of ATLAS detector

Hermetic Detector Almost all particles fully reconstructed and identified in one or more sub-detectors

Only weaklyinteracting particles pass through undetected

93

Pileup $Z \rightarrow \mu\mu$ event with 25 reconstructed vertices

High luminosity at a cost

Record luminosity achieved by having 20-40 interactions per beam crossing every 50 ns

Design was peak of 23 interaction per 25 ns

Results in degraded performance, but mostly compensated by use of smarter selection algorithms

Inclusive 0-lepton Signal Regions

Dequirement	Signal Region											
Requirement	2jl	2jm	$_{2jt}$	2jW	V	3j		4 jW				
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160											
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130											
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60											
$p_{\rm T}(j_3) \; [{\rm GeV}] >$			_	40								
$p_{\rm T}(j_4) \; [{\rm GeV}] >$	- 40											
$\Delta\phi(\mathrm{jet}_{1,2,(3)},\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}>$	0.4											
$\Delta\phi({\rm jet}_{i>3}, {\rm E}_{\rm T}^{\rm miss})_{\rm min}>$	- 0.2											
W candidates		_		$2(W \rightarrow j)$		_	$(W \to j) + (W \to jj)$					
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV^{1/2}}] >$	8 15						_					
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$	-			0.25		0.3	0.35					
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	800	800 1200 1600		1800 220		200	1100					
	Signal Region											
Requirement	4jl-	4jl	4jm	4jt	5j	6jl	6jm	6jt	6jt+			
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160											
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130											
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60											
$p_{\rm T}(j_3) [{\rm GeV}] >$	60											
$p_{\rm T}(j_4) \; [{\rm GeV}] >$	60											
$p_{\rm T}(j_5) [{\rm GeV}] >$							60					
$p_{\rm T}(j_6) \; [{\rm GeV}] >$			_		60							
$\Delta\phi(\mathrm{jet}_{1,2,(3)},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}>$	0.4											
$\Delta\phi({\rm jet}_{i>3}, {\rm E_{T}^{miss}})_{\rm min} >$	0.2											
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$]	10										
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$		_	0.4	0.25 0.2		0.2		0.25	0.15			
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	700	1000	1300	2200	1200	900	1200	1500	1700			

Top polarisation and Spin Correlations⁹⁶

- Top quark lifetime of ~3 10⁻²⁵ sec is much shorter than hadronisation time
 - Top decays as a bare quark, and does not form hadrons
 - Top spin info is not 'corrupted' by QCD interactions, transferred to decay products
- Angular decay distribution: $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos(\theta_i)} = (1 + \alpha_i \mathbf{P}\cos(\theta_i))/2$
 - θ_i angle between top decay product i and top polarisation P along chosen axis
 - α_i is spin analysing power: ~±1 for charged leptons, -0.966 / -0.393 for d / b quark
 - Normally use helicity basis, chose quantisation axis as top quark momentum direction in tT rest frame
- Negligible polarisation in SM, but spins of t and T are correlated

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos(\theta_{+}) \ d\cos(\theta_{-})} = \frac{1}{4} \left(1 + A \alpha_{+} \alpha_{-} \cos(\theta_{+}) \cos(\theta_{-}) \right) \qquad A = \frac{N_{\text{like}} - N_{\text{unlike}}}{N_{\text{like}} + N_{\text{unlike}}} = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\downarrow) - N(\downarrow\downarrow)$

- Can be measured from dilepton $\Delta \phi_{\parallel}$, or observables involving $\cos \theta_{\parallel}$
 - $\Delta \phi_{\parallel}$ is straightforward to measure precisely
 - cosθ_i requires full event reconstruction (dilepton or I+jets events)

2-lepton EW Search

* $\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^0$ (pure wino, mass degenerate); $\widetilde{\chi}_1^0$ (pure bino)

- 7 SRs designed targeting different models.
 - The same flavor and different flavor are considered separately in each SR.
- Main backgrounds: top-quark(ttbar and Wt) and dibosons.
 - For SM ttbar and WW: mt2 has an upper end-point at the W mass.

3 lepton (e/ μ / τ) EW Search

- Analysis includes up to 2 hadronic taus.
- 5 SRs are defined according to the flavor and charge of the leptons, targeting different models.
- Main backgrounds: diboson, triboson, ttbarV, tZ and VH.

2/3 Lepton Results

2-lepton searches

 $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$ via

300 350 400 450

100 150 200 250

3-lepton searches

$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$ via stau/sneutrino

m_z, zt [GeV]

Combined 2/3 Lepton Result

Long-lived

What if gluino is just a little long-lived, about 1 ns? (mini-split SUSY) Standard jets+MET SUSY searches should still apply (up to what lifetime?)

- Leptons vetos may start to fail impact-parameter cuts (when?)
- Jets will start to be identified as b-jets (when?)
- Jets may fail cleaning cuts using track pT fraction, EM fraction (when?)

First explicit re-interpretation of prompt SUSY searches for long-lived gluinos!

