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Outline	
•  IntroducAon:	Positronium	Hyperfine	
Spli7ng	(Ps-HFS)	puzzle	

•  Material	effect	and	Ps	thermalizaAon	
•  New	Experiment	

Ø  Precise	microwave	spectroscopy	using	the	
Zeeman	effect	(A.	Ishida	et	al.,	Tokyo,	2014)	

•  Other	New	Methods	
Ø  First	millimeter-wave	spectroscopy		
						(A.	Miyazaki	et	al.,	Tokyo,	2015)	
Ø  Saturated	AbsorpAon	Spectroscopy	(SAS)	
						(D.	B.	Cassidy	et	al.,	UC	Riverside,	2012)	

•  Prospects	&	conclusion	
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Positronium	Hyperfine	Spli7ng	(Ps-HFS)		
and	its	characterisAcs	
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Ps-HFS	Puzzle:	Discrepancy	Between		
Previous	Experiments	and	Theory	

Previous	
experimental	
results	are	
consistently	
lower	than	
theory.	

Previous	experimental				
					average		
203.388	65(67)	GHz	
											(3.3	ppm)	
	

O(α3lnα-1)	
		+	some	of	O(α3)		
					QED	theory	
203.391	90(25)	GHz		
												(1.2	ppm)	

16	ppm	(4.5	σ)	significant	discrepancy	
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Use	New	techniques	to	reduce		
the	possible	reasons	of	the	puzzle	

Two	possible	common	systemaAc	uncertainAes	in	the	
previous	experiments	

1.  Non-uniformity	of	the	magneAc	field.		
2.  UnderesAmaAon	of	material	effects.	Unthermalized	o-Ps	

effect	can	be	significant		
																																cf.	o-Ps	life6me	puzzle	(1990’s)	

	
	
•  Large-bore	superconducAng	magnet	to	reduce	the	

uncertainty	1.	
•  Time	informaAon	(by	β-tagging	system	and	high-performance	

γ-ray	detectors)	to	reduce	the	uncertainty	2.	
5	



EsAmaAon	of	Material	Effect	in	previous	experiments	
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•  Need	material	(gas	molecules)	so	that	positron	can	be	cooled	
down,	and	form	Ps　→ Ps	feels	electric	field	of	molecules	

　　　　　　　　　	
→If	the	Ps	velocity	is	constant	(under	assumpAon	that	Ps	is	well	

thermalized),	the	material	effect	is	proporAonal	to	gas	density.	
→The	Previous		
			experiments	

Strength	of	the	Stark	Effect	
		(∝	~	Collision	rate	with	surrounding	molecules)	
∝	(Density	of	surrounding	molecules)	x	(Ps	velocity		v)	3/5	
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Phys.	Rev.	A		
1984	30	1331	
Rimer,	Egan,	Hughes	et	al.	

<Density	dependence	at	V.	Hughes	et	al.>	
Linear	
extrapolaAon	

amagat	=	
atm	@	0	OC		
		in	ideal	gas	
(unit	of		
	number	density)	
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Ps	thermalizaAon	and	its	effect	on	Ps-HFS	
	

	
	
	
	

	

Strength	of	the	Stark	Effect	
		(∝	~	Collision	rate	with	surrounding	molecules)	
∝(Density	of	molecules)	x	(Ps	velocity		v(t))3/5	
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	v
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Time	since	Ps	formaAon	(ns)	

<	SimulaAon	of	Ame	evoluAon	of	Ps	
velocity	in	N2	gas	>	

Ps	loses	its	kineAc	energy	
and	gets	room	temperature			
=	ThermalizaAon		

σm=13.0x10-16	cm2,	
E0=2.07	eV	
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It	takes	longer	Ame	to		
thermalize	in	lower	density	
→ Linear	extrapolaAon		
		could	be	a	large	
		systemaAc	uncertainty	
	→Ps	thermaliza<on	should	
be	carefully	treated	in	Ps-
HFS	measurement.	

o-Ps	
lifeAme	
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Experimental	technique:		
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In	a	staAc	magneAc	field,	the		
p-Ps	state	mixes	with	the	mZ=0	
state	of	o-Ps	(Zeeman	effect).	
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203	GHz	
ΔHFS		can	be	
obtained	by	Δmix	

Direct	
measurement	
(Miyazaki	et	al.,	
2015)	

Indirect	
measurement	

This	is	not	precise	enough,		
so	we	solve	Ame	evoluAon		
of	density	matrix.	

	

→	2γ-ray	annihilaAon	(511	keV	
monochroma<c	signal)		rate	
increases.	
	This	increase	is	our	
experimental	signal.	

Zeeman	transi<on	

3γ	

2γ	

2γ	



New	Experimental	Setup	
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B	(0.866	T)	
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(Filled	with	
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w
av
eg
ui
de

	

22Na	
(1	MBq)	

β-tagging	system		
→Solve	systemaAc	error	
from	non-thermalized	Ps.	

High	performance	
γ-ray	detectors	
(LaBr3	scinAllators)	
	
→Solve	systemaAc	
error	from	non-
thermalized	Ps.	

High	power	RF	
(500W	CW)	

Large	bore	
superconduc6ng	
magnet	+	
compensa6on	coils	
→Solve	systemaAc	
error	from		
non-uniformity	of	
magne6c	field.	

1	2	

2	



New	technique	1:		
Large-bore	superconducAng	magnet	

Bore	diameter		
						=	80	cm	
(Length	=	2	m)	
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1.5	ppm	(RMS)	
uniformity	in	the	large	
Ps	formaAon	volume	
			(~	100	cm3).	

Ps	formaAon	
volume	

Top	View	

Axial	View	



New	technique	2:		
Time	InformaAon	

•  Tag	e+	from	the	22Na	by	thin		
				(0.1	mm)	plasAc	scinAllator.	
						→　 t=0	

RF	Cavity	
RI	Source	
(22Na	1	MBq)	

Ps	

PlasAc	
ScinAllator	

e+	
γ	

γ	
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Suppress	Prompt	events	
by	a	Timing	window	
(50	ns	–	440	ns)	

•  Treat	Ps	thermaliza<on	
correctly	

•  20	<mes	higher	S/N	

@	0.881	
amagat	

Accidental	
spectrum	is	
already	
subtracted.	



Comparison	of	Aming	spectra	
(RF-ON/OFF)	
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@	0.881	
amagat	

LifeAme	is	clearly	shortened	by	RF	due	to	the		
Zeeman	transiAon.	

Accidental	
spectrum	is	
already	
subtracted.	



Comparison	of	energy	spectra	
(RF-ON/OFF)	
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ON	Resonance	RF	OFF	
511	keV	±	1σ

High	S/N	

2γ	decay	rate	increases	because	of	the	Zeeman	transiAon.	Use	
(RF-ON	－	RF-OFF)	/	RF-OFF	of	count	rates	in	the	511	keV	±	1σ	
energy	window.	

Accidental	
spectrum	is	
already	
subtracted.	

Aming	window	50	–	60	ns	

@	0.881	
amagat	

0	

cf.	S/N	of		
previous		
experiment	

BG	



Fi7ng	of	resonance	lines	
taking	into	account	Ame	evoluAon	of	Ps-HFS	
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•  Scanned	by	MagneAc	Field	with	the	fixed	RF	frequency	and	power.		
•  50—440	ns	is	divided	to	11	sub	Aming	windows.		
•  Simultaneous	fit	of	all	of	the	gas	density,	magneAc	field	strength,	and	(sub)	

Aming	windows.	
•  Time	evoluAon	of	Ps	velocity	(thermalizaAon)	and	ΔHFS	(∝ nv3/5	)	is	taken	into	

account													(Thanks	to	Prof.	A.	P.	Mills,	Jr.	(UC	Riverside)	for	useful	discussions)	

Slow	change	at	
low	gas	density.	

Ps	velocity	/	c	 Ps-HFS	

O(100	ppm)	change	
before	50	ns	

O(10	ppm)	change	
awer	50	ns	



Fi7ng	result	of	the	resonance	lines	
Data	are	well	described	by	theory	
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χ2/ndf	=	633.3	/	592	(p	=	0.12)	

@	0.881	
amagat	 @	0.881	

amagat	



Result	1:	Center	value	favors	QED	

　　New	result	taking	into	account	the	Ps	thermalizaAon	is:	
           ΔHFS	=	203.394	2	±	0.001	6	(stat.,	8.0	ppm)	

														±	0.001	3	(sys.,	6.4	ppm)	GHz	
																																															(total	uncertainty	=	10	ppm)	
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Favors	QED	
calculaAon	
	
(Consistent	
with	theory	
within	1.1σ,		
	disfavors	
previous	
experiments	
by	2.6σ	)	

Main	systemaAc	errors:		
Material	effect	(o-Ps	pickoff,	spaAal	distribuAon	of	density	and	temperature	in	the	RF	cavity),	
MagneAc	field	(non-uniformity)	



Result	2:	Ps	thermalizaAon	effect	=	10	ppm	

　　→ Gives	10	±	2	ppm	smaller	Ps-HFS	value	in	vacuum	
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Ps	thermaliza<on	effect	is	crucial	for	
precision	measurement	of	Ps-HFS.	

Fi7ngs	of	resonance	lines	WITHOUT		
taking	into	account	the	Ame	evoluAons	(Ps	thermalizaAon)	

=	similar	method	as	the	previous	experiments	

(χ2/ndf=721.1/592,	p=2x10-4)	
This	difference	is	large	enough	to	explain	the	16	±	4	ppm	discrepancy.		



Future	prospects	
Measurement	in	vacuum	using	slow	positron	beam	
(hopefully	bemer	than	1	ppm	result	within	4—5	years)		
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Large	bore	
superconducAng	
magnet	Positron	beam	

(ns	pulsed)	 Ps	formaAon	
(Hot	metal	/					
							porous	Silica)	

Ps	

RF	

•  High	staAsAcs	(scan	in	vacuum	instead	of	extrapolaAon,		
										higher	power	RF	without	discharge)	
•  Completely	free	from	material	effect	
•  Short	measurement	period	reduces	systemaAc	errors	



Future	prospects	
EsAmaAons:	
1.  Pulsed	positron	beam	

•  beam	energy:	O(keV)	
•  beam	intensity:	>	106	e+/s	
•  Pulse	width:	<	2	ns	
•  RepeAAon	rate:	>	50	Hz	

2.  Ps	formaAon	
•  >	40%	formaAon	fracAon	of	1S	Ps	

3.  Detectors,	RF,	DAQ	system	
•  12	x	LaBr3(Ce)	γ-ray	detectors	
•  500	W	CW	Microwave	with	higher	QL	value	cavity	
•  DigiAzaAon	of	waveforms	detector	signals	
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→ 1	ppm	result	by	a	few-week	run	



Other	new	approaches	
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~	900	ppm	

~20%	
Gyrotron	

Fabry-Pérot	
cavity	

neopentane	
1atm	

New	Experiments	(Tokyo)	
Ø  First	millimeter-wave	spectroscopy		
							(A.	Miyazaki	et	al.,	PTEP	2015,	011C01	(2015))	

											First	direct	measurement	of	HFS	transiAon		

													using	a	frequency-tunable	Gyrotron.	
Side View	

gas	chamber	



New	Experiments	(Tokyo)	
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Y.	Tatematsu,	et	al.,		J.	Infrared	Milli.	
Terahz	Waves	33,	292	(2012)	

Developed	gyrotron	collaboraAon		
with	Fukui	University	(Japan)	

water	
cooling	

Gold	
mesh	
mirror	

Cu	
mirror	

reflected	
power	

transmimed	
power	

pyroelectric	
detector	

piezoelectric	
stage	

Fabry-Pérot	cavity	

80	mm	

340	µm	



New	Experiments	(UC	Riverside)	
Ø  Saturated	AbsorpAon	Spectroscopy	(SAS)	
							(D.	B.	Cassidy	et	al.,	PRL	109,	073401	(2012))	

											Measure	the	1S-2P	(Lyman-α)	transiAon	(243	nm)	of	Ps.	
													Ps-HFS	can	be	measured	by	a	crossover	resonance		
													due	to	Zeeman	mixing	of	singlet	and	triplet	states	in		
													the	2P	manifold.	
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~	2%	

Recoil	shiw	



Conclusion	
•  Ps-HFS	puzzle:	a	large	4.5	σ	discrepancy	of	Ps-HFS	
between	the	previous	experimental	values	and	
theoreAcal	calculaAon.		

•  Need	to	check	the	discrepancy	with	new	techniques.		
•  New	precise	microwave	spectroscopy	using	the	Zeeman	
effect	has	been	performed	
Ø Use	new	techniques	to	reduce	possible	systemaAc	uncertainAes	in	
the	previous	experiments	(Non-thermalized	Ps	effect	and	Non-
uniformity	of	magneAc	field).		

Ø ΔHFS	=	203.3942(21)	GHz	(10	ppm)			Favors	QED	calculaAon	
Ø Ps	thermalizaAon	effect	is	found	to	be	as	large	as	10	±	2	ppm.	

•  Other	approaches	are	also	in	progress	and	the	
techniques	are	interesAng.	

•  Future	measurements	will	be	performed	in	vacuum	
using	slow	positron	beam	(hopefully	a	new	result	within	
4—5	years).	
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