Precise measurement of positronium hyperfine splitting using the Zeeman effect

A. Ishida¹, Y. Sasaki¹, G. Akimoto¹, T. Suehara², T. Namba², S. Asai¹, T. Kobayashi², H. Saito³, M. Yoshida⁴, K. Tanaka⁴, A. Yamamoto⁴ ¹Department of Physics, the University of Tokyo ²International Center for Elementary Particle Physics (ICEPP), the University of Tokyo ³Department of General Systems Studies, the University of Tokyo ⁴High Energy Accelerator Research Organization (KEK)

LEAP2011 @ TRIUMF 28/04/2011

Outline

- Positronium Hyperfine Splitting (Ps-HFS)
- Our New Experiment
- Current Result
- Prospects

Positronium Hyperfine Splitting (Ps-HFS)

Energy difference between two spin eigenstates of the ground state Ps

 \rightarrow Ps-HFS (203 GHz)

Possible reasons for the discrepancy

- Common systematic uncertainties in the previous experiments
 - Underestimation of material effects. Unthermalized o-Ps can have a significant effect especially at low material density. *cf. o-Ps lifetime puzzle (1990's)*
 - Non-uniformity of the magnetic field. It is quite difficult to get ppm level uniform field in a large Ps formation volume.
- Need new development on calculation of bound-state QED or New physics beyond the Standard Model.

We have proposed new methods free from these systematic errors. We will provide an independent check for the discrepancy.

Experimental Technique Indirect Measurement using Zeeman Effect

In a static magnetic field, the **p-Ps** state mixes with the **m_z=0 state of o-Ps** (Annihilate into 2 γ-rays).

Precisely measure the $\Delta_{\rm mix}$ and calculate $\Delta_{\rm HFS}$ by the equation,

$$\Delta_{mix} = \frac{1}{2} \Delta_{HFS} \left(\sqrt{1 + 4x^2} - 1 \right),$$
$$x = \frac{g' \mu_B B}{\Delta_{HFS}}.$$

Experimental Technique Indirect Measurement using Zeeman Effect

When a microwave field with a frequency of Δmix is applied, transitions between the m_z=0 and m_z=±1 states of o-Ps are induced.

→ 2γ-ray annihilation (511 keV monochromatic signal) rate
increases.
This increase is our
experimental signal.

→This is the same
approach as previous
experiments.

Measurement @ KEK (Jul 2010 – 11 Mar 2011)

Large bore superconducting magnet

Cavity and detectors at the center of the magnet.

Waveguide

Earthquake on 11 Mar 2011

 Our instruments were not damaged.

 Due to lack of electric power supply, we now stop measurement.

Our new Experiment

Tag e⁺ from the ²²Na by thin (0.2 mm) plastic scintillator.

t=0

• Time difference of these signals is Ps life time of each event.

Analysis (Energy Spectra)

2γ decay rate increases because of the Zeeman transition. Zeeman transition probability is calculated from the difference between RF-ON and RF-OFF.

Resonance Line (0.895 amagat)

Scanned by Magnetic Field with the fixed RF frequency and power.

 $\Delta_{\text{HFS}} = 203.3506(20) \text{ GHz} (9.8 \text{ ppm})$ (Including errors from MC stat. ,P, and Q)

 \rightarrow Obtain the $\Delta_{\rm HFS}$ in vacuum with density correction.

Current Result

Current Result

 $\Delta_{\rm HFS}$ = 203.3951 ± 0.0024 (stat., 12ppm) ± 0.0019 (sys., 9.5 ppm) GHz

Systematic Errors (Current result)

	Source	ppm in Δ_{HFS}
Magnetic field	Non-uniformity	1.8
	Offset and reproducibility	1.0
	NMR measurement	1.0
Detection efficiency	Estimation using MC simulation	7.0
Material effect	Ps thermalization	3.0
RF	RF Power	2.9
	Q _L value of RF cavity	4.3
	RF frequency	1.0
	Quadrature sum	9.5

Prospects

- <u>Material Effect</u>: Currently we assumed that HFS depends on gas density linearly. If the unthermalized Ps contribution is large, the dependence is not linear. According to previous thermalization measurement (Skalsey et al.), thermalization effect is estimated to be less than 3 ppm with i-C₄H₁₀ gas. We are now precisely measuring the Ps thermalization using different technique.
- <u>RF System</u>: The experimental environment (temperature) control \rightarrow O(ppm) uncertainty
- <u>Detection efficiency</u>: Currently it is estimated by Monte Carlo simulation. It will be carefully studied and will be estimated by real data. → O(ppm) uncertainty
- <u>Statistics</u>: 12 ppm has been obtained.

A measurement with a precision of O(ppm) is expected within a year.

Conclusion

The current result of HFS = 203.3951 ± 0.0024 (stat., 12 ppm) ± 0.0019 (sys., 9.5 ppm) has been obtained so far.

- Our experiment is free from possible common uncertainties in previous experiments (Nonuniformity of magnetic field, Ps thermalization effect).
- A new result with an accuracy of O(ppm) will be obtained within a year which will be an independent check of the discrepancy.