ポジトロニウム 超微細構造の精密測定

東京大学大学院理学系研究科

石田明

平成23年7月12日

メンバー

東京大学大学院理学系研究科物理学専攻、 東京大学素粒子物理国際研究センター (ICEPP)

石田明、秋元銀河、佐々木雄一、 末原大幹、難波俊雄、浅井祥仁、小林富雄

東京大学大学院総合文化研究科

斎藤晴雄

高エネルギー加速器研究機構 (KEK)

吉田光宏、田中賢一、山本明

目次

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について

ポジトロニウム (Ps) ^{電子}

- 電子 (e⁻) と陽電子 (e⁺) の束縛系
 - レプトンのみから成るクリーンな系 (ハドロンの不 定性がない)
 - 最も軽い水素様「原子」
 - 粒子・反粒子系 → 標準理論を超えた物理に敏感。
 束縛系量子電磁力学 (QED) によって記述され、
 束縛系QEDの精密検証に適する。

ポジトロニウム (Ps)

考えられるずれの原因

- 過去の実験に共通した系統誤差
 - 物質の効果の過小評価。熱化していない o-Ps は、特に低 物質密度で大きな影響を及ぼす。 cf. オルソポジトロニウ ムの寿命問題 (1990年代)
 - 磁場の非一様性。大きなPs生成領域内で、ppmレベルの 一様磁場を供給するのは極めて困難。
- 束縛系QEDの計算に新しい発展が必要
- 素粒子標準模型を超えた新しい物理が存在

我々は、上記の系統誤差を抑えた、新しい方法に よる精密測定を行い、ずれを検証する。

ゼーマン効果を用いた間接測定の方法

ゼーマン効果を用いた間接測定の方法

周波数が ∆mix のマイ クロ波を供給すると、 o-Ps の m_z=0と m_z=±1 成分の間で遷移が起 こる。

→ 2γ 崩壊(**511 keV 単** 色) 率が大きくなる。 この崩壊率の変化が、 実験のシグナルになる。

→過去の全ての実験 と同じ方法

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について

磁石中心部

我々の新しい実験セットアップ

我々の新しい実験セットアップ

- ・大型超伝導磁石だけでは、まだ10ppm程度の非一様性が残る。
- PMT (強磁性体) や治具の影響も大きい。それらを含めて磁場の 一様性を O(ppm) で出せるよう、補償磁石を設計・製作した。

我々の新しい実験セットアップ

薄い (0.2 mm) プラスチックシン
 チレータを使って、²²Na から出て
 くる e⁺ をタグ
 → t=0

- 15 mm x 15 mm x 0.2 mm プラスチックシンチレータ キャビティー の蓋 75 mm 鉛シールド 中心に ²²Na
- DAQ のトリガーは、e⁺ タグと γ 線検出のコインシデンスでかける。
- 2つの信号の時間差が、各イベントにおける Ps の寿命。

時間情報とS/N

TIME (ns) o-Ps のイベント、ゼーマン遷移のイベントを、 タイミングウィンドウによって選択 → 約20倍 S/N を高める。

我々の新しい実験セットアップ

ガンマ線検出器 ~LaBr₃~

LaBr₃(Ce)シンチレータ (直径1.5インチ、長さ2インチ) を6個使用

UVTライトガイドで光を導き、 ファインメッシュPMTで、 磁場中での読み出しを行う。

我々の新しい実験セットアップ

RF回路の全体像

HFS測定のために上のようなRF回路を組んだ。詳細は次頁から

RF 導入方法

アンテナ (銅線)

もともと、金属のアンテナでキャ ビティ内に RF 導入 (電場で結 合) → 低ガス圧で放電

ガスが HFS に与える影響を低 圧で評価できない (=物質の熱化の HFS への影響 がちゃんと評価できない)

- •0.25気圧までは放電をおこさないで500W 導入に成功
- もっと低圧ではパワーを少し落として測定
 (0.18 気圧での測定時は 300 W で測定した)

遷移RFの供給系 // Cavity印加RFの強度

Signal Generatorで2856MHzのRFをGaN AMPで +50dBの増幅

Cavityの前後で(場所は後述)でCavityに入る 遷移RFのPowerをモニター 56.15dBm (412 W) @Power Meter 1 (前方) 56.09dBm (406 W) @Power Meter 2 (後方)

両者の値は1.5%(6W)でconsistent。 **Power:409W(1.5%)** ただし、HFSの測定では長時間平均 が相対的に安定していればいい。

遷移RFの安定化 // 遷移RFのモニターと安定性

東北地方太平洋沖地震の影響

- 大型超伝導磁石 (13 t) が 4.3 cm 移動。
- 測定機器等に対する影響はなかった。

電力不足で一時測定を停止していたが、5月中旬より復旧、調整等を行い、今月から測定再開。

1. イントロダクション 2. 我々の新しい実験セットアップ 3. 測定の途中結果

4. 今後の展望 5. Psの熱化について

ゼーマン遷移によって、2γ崩壊確率が大きくなった。 ゼーマン遷移確率を、RF-ONとRF-OFFの差から計算。

本測定の途中結果

系統誤差 (暫定)

	系統誤差の要因	大きさ (ppm)
磁場」	非一様性	1.8
	補正と再現性	1.0
	NMR測定值	1.0
検出効率	MCを用いた評価	7.0
物質の効果	マポジトロニウムの熱化	3.0
RF	- RF パワー	2.9
	RF キャビティーの Q _L 値	4.3
	RF周波数	1.0
	Quadrature sum	9.5

(ついでに)HFS のフィットと p-Ps の寿命

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望

5. Psの熱化について

- 物質の効果:次ページ以降で説明
- <u>RF</u>:温度管理してO(ppm)を達成。
- ・ <u>検出効率</u>:現状、モンテカルロ・シミュレーションを用いて
 評価。実データを基にした評価にし、O(ppm)を達成していく。
 →ポジトロニウム生成位置の分布など(これから)
- 統計誤差 : 今のところ 12 ppm

今後1年程度で、 O(ppm)の精度を達成する。

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について

ポジトロニウムHFSに周囲の物質が与える影響

- Ps-HFSの第一項
 =電子陽電子のスピン-スピン相互作用
 →両者の距離によって変化する
- ・ 周囲の物質の電場
 →電子陽電子間の距離が変化

→HFSの変化(シュタルク効果)

過去の実験での物質の効果の評価

Psが周りの原子に近づく
 →電場を感じてシュタルク効果が起きる

HFSに効くシュタルク効果の大きさ ∝ 周りの分子との衝突頻度 ∝ (周りの分子の密度)×(Psの速さ v)

→Ps速さ一定だと思うと、HFSはガス圧に比例してずれる

ポジトロニウムの速さ変化

「オルソポジトロニウムの寿命問題」の解決

圧力+熱化を含めた物質の効果がHFSへ及ぼす影響

イソブタンを用いる長所

• 我々の実験では、N2ではなくイソブタンを使用する。

長所1:ポジトロニウムの生成率がN₂の1.5倍程度良い。 (N₂で生成率20%、イソブタンでは30%)

長所2:陽電子がガス中で静止しやすい。

長所3:

<u>低速陽電子</u>を速やかに対消滅させる働きが大きい。 運動エネルギーが小さすぎてPsを作れない陽電子

N₂中で寿命170ns 2γ崩壊なのでBGとなる

右図:

511±3keVでカットをした、 Ps崩壊タイミングスペクトラム

赤:イソブタンなし(N₂のみ) 青:イソブタンあり

どのようにしてポジトロニウムのv(t)を測定するか?

- o-Psの<u>pick-off</u>を用いて <pick-off> 測定
- pick-offの量(t)
 = pick-offの断面積
 × 物質の密度
 × <u>o-Psの量(t)</u>
 × <u>v(t)</u>
- v(t) pick-offの量(2γ崩壊) ∝ _____

o-Psの量(3γ崩壊)

セットアップ(全体の様子)

- タイミング:プラシンでス タート、Geでストップ
- シリカエアロゲルでe⁺を止めてPsを作る
- ソース周りは真空容器に 入れてある
- ガス圧を変化させて測定
 を行う

o-Ps、pick-off量の見積もり方

まとめ

本測定の途中結果 HFS = 203.3951 ± 0.0024 (stat., 12 ppm) ± 0.0019 (sys., 9.5 ppm) GHz

- ・我々の新しい精密測定は、過去の実験において考えられる共通の系統誤差(磁場の非一様性・Psの熱化による効果)を小さくする。
- O(ppm)の結果が1年程度で得られる見込み。 これによって HFS のずれの検証を行う。

Backup

ポジトロニウムの熱化問題

\ pick/

生成された o-Ps は、1 eV 程度の運動エネルギー を持っている。

o-Psは、周りの物質とぶつかって、エネルギーを落 とし、室温 (1/30 eV) に下がる (熱化)。

昔は、熱化はすぐに起こると思われていた。

しかし、熱化に時間がかかると、

物質の効果 (🗙 衝突頻度) は、 密度に比例しない。

実際、1990年代の 「オルソポジトロニウムの寿命問題」で、 熱化には時間がかかり、これが 深刻な系統誤差となることが分かった。

→HFSでも、深刻な系統誤差と なっている可能性がある (低圧では、より熱化に時間が かかり、大きな効果)。

磁場中でのファインメッシュ PMT

0.866 T 磁場中に LaBr₃(Ce) シンチレータ(1 inch) ファインメッシュ PMT 1.5 inch намаматsu R7761 2.0 inch намаматsu R5924 を back-to-back に配置

²²Na 線源 (511 keV 2γ back-toback, 1275 keV γ) を用いて測定。

RELATIVE GAIN

57

エネルギー分解能の角度(θ)依存性

時間分解能の角度(θ)依存性

遷移RFの安定化 //Power Feedback

AMPのGainは室温の変化に伴って大きく変動する。遷移RFのPowerが不安定になる とHFSの測定精度が低下する。出力FeedbackでリアルタイムでAMPに入れるRFの量 を調整することでAMP出力を一定に保つ。

AMPは長期にわたって、安定したPowerを維持した。瞬間値のばらつきは0.12%であり、1時間平均は0.02%以下のばらつきに収まっている。(正常に機能)

遷移RFのモニター精度と長期安定性

回路の安定性と遷移RFの精度評価は、Forward Power Meterと Transmit Power Meterを比較することで行っている。Transmit Power MeterもGaussian で分布しており、 瞬間値のばらつきは0.17%である。 RUN毎のPower積分は十分な精度(長時間平均0.1%以下を要請)で制御できている。

- 1. HFSの測定は印加磁場と遷移周波数の対応関係を測定するため、Cavityに印 加する周波数は本来うごかすべきではない。
- 2. Cavityの共振周波数と供給するRFの周波数がずれると、インピーダンスのミス マッチによりRFがCavityに入らず反射されるようになる。
- Cavity内に入るRFの強度が不安定になり、また、大強度のRFが逆流すると測定
 回路やAMPを破壊する恐れがあるため、周波数Feedbackを行った。

エネルギースペクトルのフィット

Ps-HFSの理論

項	比率 (ppm)	HFS (GHz)	年
Leading Order ((7/12)m $lpha^4$)	1 000 000	204.386 63	1947-1951
O(α) 補正	- 4 919.6	-1.005 50	1952
O(α²) 補正	57.7	0.011 80	1966-2000
O(α³) 補正	-6.1(2.0)	-0.001 24(41)	1993-2001
合計	995 132.1(2.0)	203.391 69(41)	

$$\Delta \nu^{\text{th}} = \Delta \nu_0^{\text{th}} \left\{ 1 - \frac{\alpha}{\pi} \left(\frac{32}{21} + \frac{6}{7} \ln 2 \right) + \frac{5}{14} \alpha^2 \ln \frac{1}{\alpha} + \left(\frac{\alpha}{\pi} \right)^2 \left[\frac{1367}{378} - \frac{5197}{2016} \pi^2 + \left(\frac{6}{7} + \frac{221}{84} \pi^2 \right) \ln 2 - \frac{159}{56} \zeta(3) \right] - \frac{3}{2} \frac{\alpha^3}{\pi} \ln^2 \frac{1}{\alpha} + C \frac{\alpha^3}{\pi} \ln \frac{1}{\alpha} + D \left(\frac{\alpha}{\pi} \right)^3 \right\},$$
(3)
$$PRL 85, 5094 (2000)$$

過去の実験における系統誤差

	1977	1983	All
Counting statistics	5.0	4.4	2.8
Magnetic field inhomogeneities	2.4	1.0	1.6
Magnetic field offset and reproducibility	1.4	0.8	1.0
Nuclear magnetic resonance (NMR) calibration	0.4	0.4	0.4
Microwave power and frequency uncertainty	0.5	0.5	0.5
Density uncertainty	0.3	0.3	0.3
Line-shape corrections	1.1	0.6	0.7
Quadrature sum	5.9	4.7	3.6

TABLE III. Uncertainties in Δv measurement (ppm).

Ps 熱化測定 実験セットアップ (β+系)

- 線源:²²Na (30kBq、Ti ホイル)
- β⁺:プラスチックシンチレータ (200μm厚) で検出
- シンチレーション光は、ライトガイド を通って2本のR329へ運ばれる。
- → 時間のスタートは、2つのPMTシ グナルのコインシデンス

熱化パラメータからHFS補正量への焼き直し

測定した
 σ_mの
 値からシュタルク
 効果
 補正量の
 計算を
 行った。

・シュタルク効果の大きさは (Ps の速さ)×(ガス圧力)に比例。
 ・2γへの遷移への影響は、さらにo-Ps→2γの遷移確率が掛かる。

ACAR

Angular Correlation of Annihilation Radiation

Fig. 1. One dimensional angular correlation apparatus having three pairs of long (800 mm) NaI(Tl) scintillation detectors. Adjacent pairs are separated by 13 milliradians.

Figure 1. ACAR data for silica aerogel (a) in vacuum and (b) in 2.8 amagat of N₂. The full and broken curves indicate the broad component and the *p*-Ps component, respectively. The data are normalized to the broad component intensity. The magnetic flux density and the mean lifetime of o'-Ps, τ , are indicated in the figure. The mean lifetime of *p*-Ps, τ_{pPs} , is also indicated for the case of no magnetic field.

70

Phys. Rev. A 52, 258 (1995) J. Phys. B 31, 329 (1998) J. Phys. B 36, 4191 (2003)

DBS

Doppler-Broadening Spectroscopy

FIG. 2. Experimental apparatus. Positrons from ²²Na decay pass through a thin scintillator and enter a gas chamber. A magnetic field confines the trajectories near the axis. Positrons that stop in the gas can form Ps. Annihilation γ rays are detected in a Ge crystal.

FIG. 3. Typical thermalization data. The Doppler-broadened 511-keV photopeak is resolved into two Gaussians, a step background, and a 2γ tail. The first three components are shown convoluted with the intrinsic detector resolution; the 2γ tail is also convoluted with the narrow Gaussian.

Phys. Rev. Lett. 80, 3727 (1998) Phys. Rev. A 67, 022504 (2003)

100 mm

磁場を精密に測定した。 キャビティー 内で 310 点 測定。NMRプローブ

MAGNETIC FIELD DISTRIBUTION

RF 磁場の強度

遷移曲線の理論(1)

The experimental resonance line shape is obtained using density matrix. We use the basis for four spin eigenstates of Ps as $(\psi_0, \psi_1, \psi_2, \psi_3) \equiv (|0,0\rangle, |1,0\rangle, |1,1\rangle, |1,-1\rangle)$. We apply a magnetic field

$$\mathbf{B}(t) = B\hat{\mathbf{z}} + B_0\hat{\mathbf{x}}\cos\left(\omega t\right) \,, \tag{2}$$

where $\hat{\mathbf{z}}$, $\hat{\mathbf{x}}$ are the unit vectors for z, x direction respectively, B_0 is magnetic field strength of microwaves, and ω is the frequency of microwaves.

遷移曲線の理論(2)

Then the Hamiltonian

H including Ps decay becomes

$$H = \begin{pmatrix} -\frac{1}{2} - \frac{i}{2}\gamma_{\rm s} & -x & y & -y \\ -x & \frac{1}{2} - \frac{i}{2}\gamma_{\rm t} & 0 & 0 \\ y & 0 & \frac{1}{2} - \frac{i}{2}\gamma_{\rm t} & 0 \\ -y & 0 & 0 & \frac{1}{2} - \frac{i}{2}\gamma_{\rm t} \end{pmatrix} h\Delta_{\rm HFS},$$
(3)
where $y = \frac{g'\mu_B B_0}{\sqrt{2}h\Delta_{\rm HFS}}\cos(\omega t), \ \gamma_{\rm s} = \frac{\Gamma_{\rm p-Ps}}{2\pi\Delta_{\rm HFS}}, \ \gamma_{\rm t} = \frac{\Gamma_{\rm o-Ps}}{2\pi\Delta_{\rm HFS}}, \ \Gamma_{\rm p-Ps}, \ \Gamma_{\rm o-Ps} \text{ are the decay rate of p-Ps, o-Ps}$
respectively. The most recent and precise experimental values are $\Gamma_{\rm o-Ps} = 7.040 \ 1(7) \ \mu {\rm s}^{-1}$ [4] and $\Gamma_{\rm p-Ps} = 7.990 \ 9(17) \ {\rm ns}^{-1}$ [8].

遷移曲線の理論(3)

From the time-dependent Schrödinger equation, the 4×4 density matrix $\rho(t)$ is given by

$$i\hbar\dot{\rho} = H\rho - \rho H^{\dagger} \,, \tag{4}$$

where the *i*, *j*-element of $\rho(t)$ is defined as $\rho_{ij}(t) \equiv \langle \psi_i | \psi(t) \rangle \langle \psi(t) | \psi_j \rangle$. If we take the initial state to be unpolarized, $\rho(0) = \text{diag}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.

遷移曲線の理論(4)

The 2γ -ray annihilation probability $S_{2\gamma}$ and 3γ -ray annihilation probability $S_{3\gamma}$, between $t = t_0$ and $t = t_1$, are obtained by

$$S_{2\gamma} = \Gamma_{\rm p-Ps} \int_{t_0}^{t_1} \rho_{00}(t) dt \,, \tag{5}$$

$$S_{3\gamma} = \Gamma_{\text{o-Ps}} \int_{t_0}^{t_1} \left(\rho_{11}(t) + \rho_{22}(t) + \rho_{33}(t) \right) dt \,. \tag{6}$$

タイミングウィンドウ の選び方

我々の新しい実験セットアップ

我々の新しい実験セットアップ

ライトガイドの長さによる光量の変化

角度(曲げ)依存性

各種シンチレータの特性

シンチレータ	密度	屈折率	Photons per MeV	最大発光 波長	時定数	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃ (Ce)	5.08	1.9	63000	380	16	1.88