ゼーマン効果を用いた ポジトロニウム超微細構造の 精密測定

東京大学大学院理学系研究科

石田明

平成23年10月20日 KEK超伝導低温工学センターセミナー

メンバー

東京大学大学院理学系研究科物理学専攻、 東京大学素粒子物理国際研究センター (ICEPP)

石田明、 末原大幹、難波俊雄、浅井祥仁、小林富雄

東京大学大学院総合文化研究科

斎藤晴雄

高エネルギー加速器研究機構 (KEK)

吉田光宏、田中賢一、山本明

目次

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について まとめ

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について まとめ

ポジトロニウム (Ps) ^{電子}

- 電子 (e⁻) と陽電子 (e⁺) の束縛系
 - レプトンのみから成るクリーンな系 (ハドロンの不 定性がない)
 - 最も軽い水素様「原子」
 - 粒子・反粒子系 → 標準理論を超えた物理に敏感。
 束縛系量子電磁力学 (QED) によって記述され、
 束縛系QEDの精密検証に適する。

ポジトロニウム (Ps)

考えられるずれの原因

- 過去の実験に共通した系統誤差
 - 1. 磁場の非一様性。大きなPs生成領域内で、ppmレベルの 一様磁場を供給するのは極めて困難。
 - 物質の効果の過小評価。熱化していない o-Ps は、特に低物質密度で大きな影響を及ぼす。
 cf. オルソポジトロニウムの寿命問題 (1990年代)

我々は、上記の系統誤差を抑えた、新しい方法に よる精密測定を行い、ずれを検証する。

- 束縛系QEDの計算に新しい発展が必要
- 素粒子標準模型を超えた新しい物理が存在

ゼーマン効果を用いた間接測定の方法

ゼーマン効果を用いた間接測定の方法

周波数が ∆mix のマイ クロ波を供給すると、 o-Ps の m_z=0と m_z=±1 成分の間で遷移が起 こる。

→ 2γ 崩壊(**511 keV 単** 色) 率が大きくなる。 この崩壊率の変化が、 実験のシグナルになる。

→過去の全ての実験 と同じ方法

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について まとめ

磁石中心部

我々の新しい実験セットアップ

我々の新しい実験セットアップ

100 mm

磁場を精密に測定した。 キャビティー 内で 310 点 測定。NMRプローブ

- ・大型超伝導磁石だけでは、まだ10ppm程度の非一様性が残る。
- ・ PMT (強磁性体) や治具の影響も大きい。それらを含めて磁場の 一様性を O(ppm) で出せるよう、補償磁石を設計・製作した。

我々の新しい実験セットアップ

薄い (0.2 mm) プラスチックシン
 チレータを使って、²²Na から出て
 くる e⁺ をタグ
 → t=0

- 15 mm x 15 mm x 0.2 mm プラスチックシンチレータ キャビティー の蓋 75 mm 鉛シールド 中心に ²²Na
- DAQ のトリガーは、e⁺ タグと γ 線検出のコインシデンスでかける。
- 2つの信号の時間差が、各イベントにおける Ps の寿命。

ガンマ線検出器 ~LaBr₃~

LaBr₃(Ce)シンチレータ (直径1.5インチ、長さ2インチ) を6個使用

UVTライトガイドで光を導き、 ファインメッシュPMTで、 磁場中での読み出しを行う。

我々の新しい実験セットアップ

RF回路の全体像

遷移RFの安定化 // 遷移RFのモニターと安定性

東北地方太平洋沖地震の影響

- 大型超伝導磁石 (13 t) が 4.3 cm 移動。
- 測定機器等に対する影響はなかった。

•

ー時測定を停止していたが、5月 中旬より復旧、調整等を行い、7月 から測定再開。

イントロダクション 我々の新しい実験セットアップ 測定の途中結果

4. 今後の展望
 5. Psの熱化について
 6. まとめ

ゼーマン遷移によって、2γ崩壊確率が大きくなった。 ゼーマン遷移確率を、RF-ONとRF-OFFの差から計算。

本測定の途中結果

系統誤差 (暫定)

	系統誤差の要因	大きさ (ppm)
磁場	非一様性	1.8
	補正と再現性	1.0
	NMR測定值	1.0
検出効率	MCを用いた評価	5.4
物質の効果	ポジトロニウムの熱化	3.0
	RF パワー	1.9
RF - まだ大きい系統 誤差があるが、	RF キャビティーの Q _L 値	4.5
	RF周波数	1.0
	Quadrature sum	8.0
夜で迎へるように 対策して ppm レ ベルにする。		

残留/放出ガスの効果

残留/放出ガスへの対策

- ターボ分子ポンプの使用、ベーキングの徹底 (ガス圧変更前に1週間程度)。
- ガス系の設計変更(コンダクタン スを大きく)。
- ライトガイドの材料として、アクリ ル(ガス放出速度が大きい)の代 わりに、石英を用いる。
- スキャンの間ガス封じきりでなく、
 各磁場点毎に入れ替え。

上記対策により、残留/放出ガスを減らし、変化を調べる。

ターボ分子 ポンプ

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について まとめ

- <u>残留/放出ガスの効果</u>:残留/放出ガスを抑えた測定で、効果の有 無や大きさを調べる。
- ・ <u>検出効率</u>:現状、モンテカルロ・シミュレーションを用いて評価。実データを基にした評価にし、ppm levelを達成していく。
 →ポジトロニウム生成位置の分布など(これから)
- 物質の効果: 現状、HFSがガス密度に線型に依存すると仮定している。
 しかし、熱化していないポジトロニウムの影響が大きいと、これは非線型になる。過去の熱化測定 (Skalsey *et al.*) によれば、熱化の効果は i-C₄H₁₀ ガスで 3 ppm 以下と見積もられる。現在、ポジトロニウムの熱化関数を別の手法で精密に測定している。
- <u>RF</u>:温度管理、性質の更なる理解で ppm level を達成する。
- 統計誤差 : 今のところ 9.2 ppm

来年度末までに、O(ppm)の精度を達成する。

1. イントロダクション 2. 我々の新しい実験セットアップ 3. 測定の途中結果 4. 今後の展望 5. Psの熱化について 6. まとめ

ポジトロニウムHFSに周囲の物質が与える影響

- Ps-HFS
 - = スピン-スピン相互作用 + 量子振動 →両者の距離によって変化する
- ・ 周囲の物質の電場
 →電子陽電子間の距離が変化

→HFSの変化(シュタルク効果)

過去の実験での物質の効果の評価

Psが周りの原子に近づく
 →電場を感じてシュタルク効果が起きる

HFSに効くシュタルク効果の大きさ ∝周りの分子との衝突頻度 ∝(<u>周りの分子の密度)</u>×(Psの速さ v)

→Ps速さ一定だと思うと、HFSはガス圧に比例してずれる

ポジトロニウムの速さ変化

「オルソポジトロニウムの寿命問題」の解決

圧力+熱化を含めた物質の効果がHFSへ及ぼす影響

イソブタンを用いる長所

• 我々の実験では、N2ではなくイソブタンを使用する。

長所1:ポジトロニウムの生成率がN2の1.5倍程度良い。 (N2で生成率20%、イソブタンでは30%)

長所2:陽電子がガス中で静止しやすい。

長所3: <u>低速陽電子</u>を速やかに対消滅させる働きが大きい。 運動エネルギーが小さすぎてPsを作れず2γ崩壊するe⁺ N₂中で寿命170ns (BGになる) → イソブタン中で 0.3 ns S/N

長所4:Psの熱化が速い (Skalsey *et al.* によれば、 イソブタン中では N₂ 中の約5倍速い)。

熱化

統計

どのようにしてポジトロニウムのv(t)を測定するか?

- o-Psの<u>pick-off</u>を用いて <pick-off> 測定
- pick-offの量(t)
 = pick-offの断面積
 × 物質の密度
 × <u>o-Psの量(t)</u>
 × <u>v(t)</u>
- v(t) pick-offの量(2γ崩壊) ∝ _____

o-Psの量(3γ崩壊)

セットアップ(全体の様子)

- タイミング:プラシンでス タート、Geでストップ
- イソブタンガス中でe⁺を止めてPsを作る
- ソース周りは真空容器に 入れてある
- ガス圧を変化させて測定
 を行う

o-Ps、pick-off量の見積もり方

イントロダクション 我々の新しい実験セットアップ 測定の途中結果 今後の展望 Psの熱化について まとめ

まとめ

本測定の途中結果 HFS = 203.3887 ± 0.0019 (stat., 9.2 ppm) ± 0.0016 (sys., 8.0 ppm) GHz

- 我々の新しい精密測定は、過去の実験において 考えられる共通の系統誤差(磁場の非一様性・ Psの熱化による効果)を小さくする。
- 上記途中結果は、残留/放出ガスの効果が見えている可能性があり、今後調査・対策する。
- O(ppm)の結果が来年度末までに得られる見込み。これによって HFS のずれの検証を行う。