ポジトロニウムの 超微細構造の精密測定 中間結果の報告

石田 明 (東京大学大学院理学系研究科)

KEK 低温センターセミナー 平成21年10月8日

Ps HFS 測定

- 東大物理&素粒子センター
 小林富雄、浅井祥仁、難波俊雄、末原大幹、
 秋元銀河、石田明、佐々木雄一、宮崎彬、加藤康作
- 東大総合文化
 - 斎藤晴雄
- KEK 低温センター&加速器
 山本明、田中賢一、吉田光宏
- 福井大遠赤外センター
 出原敏孝、小川勇、漆崎裕一
- ブルガリア科学アカデミー
 S. Sabchebski

203 GHz

直接遷移実験

目次

- ポジトロニウムとは
- ・エネルギー準位と超微細構造(HFS)
- HFSは、ずれている
- なぜ、ずれているのか
- 過去の実験と、考えられる系統誤差
- ・我々の新しい実験セットアップ
- ・ 第1回測定とその結果
- ・今後の展望

- ・電子陽電子束縛系
 レプトン2個だけから成る、最も軽くて簡単な「原子」
 粒子・反粒子 → 新しい物理に敏感
- 東縛系 QED によって記述
- 基底状態 (1S) は、スピンの状態に応じて2種類の状態
 - 1³S₁ (triplet、spin=1): オルソポジトロニウム (o-Ps)
 - τ=142ns、3γ、(5γ、7γ…)に崩壊
 - 1¹S₀ (singlet、spin=0): パラポジトロニウム (p-Ps)
 - τ=125ps、2γ、(4γ、6γ…)に崩壊

二つの状態

エネルギー準位

超微細構造のズレが何を意味するか

- 理論計算が間違っている
 - 自由粒子の QED 計算と違い、束縛系の計算はそれなりに難しい
 - 3次の項の計算も、今世紀に入ってから
- 過去の測定に共通の間違いがある
 - 後述します
- 未知の物理の可能性
 - 相互作用の弱い未知の粒子の介在
 - 重い粒子には感度が弱いが、g-2と違い、
 s-channelの効果も見える
 (例えば、O(MeV)、α~10⁻⁸の擬スカラー)
 - o-Ps の場合、余剰次元にも感度

われわれが、はっきりさせましょう

過去の実験と、考えられる系統誤差

RF Cavityにガスを入れて β⁺線からポジトロニウムを生成

系統誤差1. 磁場の非一様性

磁場の不定性がそのまま 測定結果の主な系統誤差に。 一方、ポジトロニウムの 生成領域は数cmに及ぶ。 → 大きなサイズでppm精度での 磁場制御は非常に困難。

系統誤差2.物質の効果

ポジトロニウム生成には、物質 (ここではガス)が必要不可欠だが、 物質は、HFSの値をずらしてしまう。 過去の実験では、物質の効果 の評価が、十分でなかった可能 性がある。 ¹⁰

物質の効果

ポジトロニウムが物質と衝突すると、物質の周りの電場を感じて、エネルギー準位が変化する(シュタルク効果)。

この効果は、衝突頻度に比例する。 →速度が一定なら、衝突頻度は密度に比例する。

11

ポジトロニウムの熱化問題

究 頻]

Э Л

生成された o-Ps は、1 eV 程度の運動エネルギー を持っている。

o-Psは、周りの物質とぶつかって、エネルギーを落 とし、室温 (1/30 eV) に下がる (熱化)。

昔は、熱化はすぐに起こると思われていた。

しかし、熱化に時間がかかると、 物質の効果 (🗙 衝突頻度) は、 密度に比例しない。

実際、1990年代の 「オルソポジトロニウムの寿命問題」で、 熱化には時間がかかり、これが 深刻な系統誤差となることが分かった。

→HFSでも、深刻な系統誤差と なっている可能性がある (低圧では、より熱化に時間が かかり、大きな効果)。

我々の測定システム

測定の原理は過去と同じ(Zeeman効果を使った間接測定)だが、

過去の問題点(磁場の非一様性、物質の効果)を解決するため新しい方法を用いる。

我々の間接測定のセットアップ @KEK 低温棟

500W 2.856GHz RF (CW)

超伝導磁石 ボア径 80cm

大型の超伝導磁石を 永久電流モードで使用する事で、 均一かつ安定な磁場を印加

> 磁石のボア中心部に キャビティ & 検出器

中心部のセットアップ (磁石ボア中心)

RF Cavity

RF AMP

β-tagging system

2つのPMTのシグナルを コインシデンスする。
十分な光量(~10p.e.)が 得られることを確認。 ・プラスチックシンチレータを使って、 線源から放出されたe⁺をタグ。

- シグナルは、ファインメッシュ
 PMTで両側読み出し。
- この時刻をポジトロニウム生成 時刻(t=0)とする。

新しい2γ-taggingの方法

2γ崩壊と 3γ崩壊の比から、HFS を求める
 → 2γを正確に tag する必要 2つの方法

高いエネルギー分解能 をもつ LaBr₃(Ce) シンチレータを使うことで、Energy tagging が可能 → 約50倍高い統計が得られる(短期間で測定可能)

第1回 測定(1)

- 2009年6月から9月まで、測定した。
- Trigger は、 β -tagging system でのプラスチックシンチレータの コインシデンスとLaBr₃のORを、コインシデンスさせて作る (β がタグできて、かつLaBr₃が1個でも鳴ったらデータを取る)。
- ポジトロニウムは、Cavity 中の
 混合ガス(N₂ 90% + イソブタン 10%) によって生成。
- イソブタン (クエンチング・ガス)によって、低速陽電子からの バックグラウンドを除去。
- ガス圧 1.5 atm, 1.0 atm で測定。
- Trigger rate ~ 3.5 kHz, DAQ rate ~ 0.7 kHz

 o-Psの、m_z=±1成分からm_z=0 成分への遷移(Zeeman遷移)に よって 2γ 崩壊の数が増えるの を見る。

 固定磁場において、RFの周 波数を変えて測りたいが、アン プやCavityは、広範な周波数に 対応できない。

 ・固定周波数で、磁場を変えて 変化を見ても、本質的には同じ。→磁場でスキャン

磁場は、変更するたび、永久
 電流モードにする(安定した後の変化は、<u>±1ppm以下</u>)。

日中、RFをかけて測定し、夜
 中・休日に、RF-OFFの測定を行う。

時間スペクトル

- •プラスチックシンチレータ と、LaBr₃の時間差。
- •分解能 σ~1.0 ns
- •511±19 keV の エネルギーカットで、 2γ イベントを選択。
- •通常(RF OFF)は、短い成 分(磁場)と、長い成分 (pick-off)。
- ・共鳴ピーク上(赤)では、 遷移によって、2γイベント が増加していることが分 かる。

エネルギースペクトル(1)

Prompt suppression及び、アクシデンタルを除くため、30-200 nsの
 Timing window。

•アクシデンタル(700-900 ns)を、差し引いて、 エネルギースペクトルを 作成。

•380-460 keV の、2γ崩 壊からのコンプトン効果 によるなだれ込みが最 も少ない領域で、ノーマ ライズ。

エネルギースペクトル(2)

・RF OFFのスペクトル を差し引いた後のスペ クトル。

・遷移 2γのみのスペ クトルと考えてよい。

・共鳴ピークで、2γ崩 壊が増えていることが、 はっきりと現れている。

•ピークから外れたところ(青)では、遷移が 少ない。

1.5 atm での HFS HFS = 203.3774 ± 0.0035 GHz (17 ppm, 統計誤差のみ)

1.0 atm の結果

HFS = 203.3767 ± 0.0050 GHz (25 ppm, 統計誤差のみ)

今回の、我々の結果からだけでは、圧力依存性は見られなかったが、 過去の実験とはコンシステント

→ 今回は、-33 ppm/atm (Ritter et al., 1984)の補正を入れる。30

	系統誤差の要因	大きさ (ppm)	系統誤差の要因	大きさ (ppm)
	磁場の非一様性	22	RF 周波数	6
	解析法	< 40	RF Cavity の Q値	10
	(研究中 → Backup)		測定点とPs生成領域間の	4
	共鳴曲線の補正	< 20	磁場の補正	
	圧力依存性 (熱化以外)	8	磁場変動	2
	ポジトロニウムの熱化	< 20	NMR磁場測定	2
Ⅰ 青:	字:今後の解析で改善予定		Quadrature sum	56

1.5 atm, 1.0 atm での測定で得られたHFSの暫定値 203.385 ± 0.003 (14 ppm, stat.) ± 0.011 (56 ppm, sys.) GHz <u>過去の実験値・理論値と無矛盾</u> 系統誤差を1桁以上改善する必要がある。

- ・磁場の非一様性が、深刻な系統誤差。
- Cavity内部での磁場の非一様性は、RMSで23 ppm。

RF 磁場の強度

RFによる磁場のエネルギー分布(TM110 モード)

陽電子が止まる場所

陽電子が止まる場所の分布 RF 磁場エネルギーに加え、 (Geant4 MC simulation) 陽電子が止まる場所分布の z (AXIAL) POSITION (mm) 5 5 5 6 7 7 7 7 7 7 7 7 7 る数(A.U. 重みをかけた後 50 Y=0 平面での磁場分布 (Cavity の中心が原点) ₩ 30 Z (AXIAL) POSITION (mm) 50 50 50 50 t (ppm) 10 -40 畺 影 40 60 -60 -20 n 20 X POSITION (mm) 一様性は 11 ppm (RMS) -40 ·20 片 (HFS にして、22 ppm) に改善 -60 -40 -20 20 40 60 0 **X POSITION (mm)** →これが、最終的な系統誤差に。

・ 補償磁石の製作

深刻な系統誤差:磁場の非一様性を克服するため、 補償磁石を用いる。今回の磁場測定の結果を基に、 設計を開始している。実機製作を行い、試験的に HFS測定を行う(年明け)。O(1)ppmの磁場一様性を 得る。

- 系統誤差、解析方法の研究 → 他の系統誤差を1
 ppm 程度に抑える。
- 物質の効果を精密に測定し、O(1) ppm の精度で
 HFSを測る(本測定、来年)。
- 統計精度:第1回測定で、約60日で14 ppm
- 今後2年間程度の測定で、必要な精度が得られる。

まとめ

- 重要な物理量である、ポジトロニウムの超微細構造が、実験と理論で一様に3.9 σずれている。
- ポジトロニウムの超微細構造の精密測定に向け、2ヶ月間、第1回測定を行った。
- 今までのデータから、過去の実験値・理論値と無矛 盾な結果が、58 ppm 程度で求まっている。
- ・深刻な系統誤差は、磁場の非一様性。
- 磁場の一様性を、O(1) ppmで得るため、補正磁石を 開発する。
- 2年程度で、物質の効果を入れて O(1) ppm の精度 を達成する。

Backup

低速陽電子 (Slow Positron)

・ガス中で、陽電子は、ガス分子との衝突を繰り返し、エネルギーを失う。

- エネルギーを失ってほぼ止まった後、陽電子の多くは、遅くなったまま生き続け、Psを生成したり、対消滅したりせず、~180 ns の寿命を持つ → 低速陽電子
 タイミングカットをかけて、アクシデンタルを引いても、低速陽電子が対消滅するときの2vが、大きなバックグラウンドとなる。
- 2008年末のテスト測定では、これが大きな問題となった (30—400 ns timing windowのなかで、アクシデンタルを引いた後のイベントの、60 %を、低速陽電子が占めていた)。
- イソブタンなどのガスは、低速陽電子の寿命を短くする、クエンチャーの能力がある。→今回の測定では、イソブタンを混ぜ、バックグラウンド除去に成功した。

磁場中での寿命 2成分フィット例

解析法(1)

Single $2\gamma/3\gamma$ RF-ON+RF-OFF

- 解析法として、まず、LaBr₃ single triggerで、2γ/3γの 比を、RF-ONからRF-OFFを引いて調べた (3γでノー マライズした)。
- これ以外にも、解析法 (2γ 遷移量の選び方) は、考えられる。
- 解析方法による違いは、最終結果の系統誤差となるので、詳細な研究が必要。
- RF-ON のみで 2γ/3γを見る方法、RF-ON の 2γレート だけを見る方法、single trigger でなく、back-to-back を用いる方法が考えられる。計6通り試した。

解析法(2) Single 2γ/3γ RF-ON

= 203.395 ± 0.003 (15 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(3) Single 2γ RF-ON

= 203.396 ± 0.003 (15 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(4)

Back-to-back 2γ/3γ RF-ON+RF-OFF

HFS

= 203.392 ± 0.024 (120 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(5) Back-to-back 2γ/3γ RF-ON

解析法(4)におい て、RF-OFFの引き算 を行わなかったもの。

HFS

= 203.399 ± 0.022 (110 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(6) Back-to-back 2y RF-ON

HFS

= 203.391 ± 0.017 (84 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

実験値 理論値 Single 2y/3y RF-ON+RF-OFF Single $2\gamma/3\gamma$ RF-ON Single 2y RF-ON Back-to-back 2y/3y RF-ON+RF-OFF Back-to-back 2y/3y RF-ON Back-to-back 2y RF-ON 203.37 203.38 203.39 203.4 203.41 203.42 HFS (GHz)

解析法の違いによる系統誤差が、40 ppm と、大きすぎる。 → 更なる研究が必要。

熱化は測れるか?

時間分解能の角度(か)依存性

ライトガイドの長さによる光量の変化

角度(曲げ)依存性

Table of Scintillator Properties

Scintillator	Density	Refractive index	Photons per MeV	Emission Maximum	Decay Constant	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃ (Ce)	5.29	1.9	63000	380	25.6	1.88

Timing Window の選び方

