
• Tag e+ from the 22Na by thin 
(0.1 mm) plastic scintillator.

→ t=0

New precise measurement of

the hyperfine splitting of positronium
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Positronium and its hyperfine structure (HFS)

Positronium (Ps)

- The bound state of an electron (e-) and
a positron (e+)

- The energy splitting between o-Ps and p-Ps

Hyperfine splitting (HFS)

- The measured values are consistent with
each other and lower than the theoretical
Calculations

How to measure the HFS?

Experimental setup

1. Non-uniformity of the magnetic field
2. Underestimation of the material effect

- Unthermalized o-Ps effect can be significant cf. o-Ps lifetime puzzle (1990's)

To reduce possible systematic uncertainties, we use the following new methods.

Measurement using the Zeeman effect
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13.012 4(17) GHz
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16 ppm (4.5 s ) 

significant discrepancy

Transition → 2 γ decay rate increases.

3GHz
@ 0.9 T

203 GHz

Zeeman transition
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Possible systematic uncertainties

in the previous experiments

Precisely measure the Dmix and calculate 
DHFS by the equation, 

In a static magnetic field, the p-Ps state 
mixes with the mZ=0 state of o-Ps
(Annihilate into 2 g-rays).

- The value of HFS

Experimental average
203.388 65(67) GHz  (3.3 ppm)

Theory
203.391 90(25) GHz  (1.2 ppm)
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m This is not precise enough, 
so we solve time evolution 
of density matrix.
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b-tagging system
→Solve systematic error 
from non-thermalized Ps.

High performance g-
ray detectors
(LaBr3 scintillators)

→Solve systematic 
error from non-
thermalized Ps.

High power RF 
(500W CW)

Large bore 
superconducting 
magnet + compensation 
coils
→Solve systematic 
error from 
non-uniformity of 
magnetic field.

1

2

2 Bore diameter 
= 80 cm

(Length = 2 m)

1.5 ppm (RMS) 
uniformity in the large Ps 
formation volume

(~ 100 cm3).

Ps formation 
volume

Top View

Axial View

• Treat Ps thermalization 
correctly

• 20 times higher S/N

@ 0.881 
amagat

Lifetime is clearly shortened by RF due to the 
Zeeman transition.

Accidental 
spectrum is 
already 
subtracted.

Comparison of timing spectra
(RF-ON/OFF)

Analysis and Result

Comparison of energy spectra
(RF-ON/OFF)

ON Resonance RF OFF
511 keV ± 1s

High S/N

2g decay rate increases because of the Zeeman 
transition. Use (RF-ON － RF-OFF) / RF-OFF of count 
rates in the 511 keV± 1s energy window.

timing window 50 – 60 ns

@ 0.881 
amagat

0

cf. S/N of 
previous 
experiment

BG

Fitting of resonance lines
taking into account time evolution of Ps-HFS

• Scanned by Magnetic Field with the fixed RF frequency and 
power. 

• 50—440 ns is divided to 11 sub timing windows. 
• Simultaneous fit of all of the gas density, magnetic field strength, 

and (sub) timing windows.
• Time evolution of Ps velocity (thermalization) and DHFS (∝ nv3/5 )

is taken into account    (Thanks to Prof. A. P. Mills, Jr. (UC 
Riverside) for useful discussions)

Slow change at low 
gas density.

Ps velocity / c Ps-HFS

O(100 ppm) change
before 50 ns

O(10 ppm) change
after 50 ns

@ 0.881 
amagat @ 0.881 

amagat

Result 1: Center value favors QED

New result taking into account the Ps thermalization is:
DHFS = 203.394 2 ± 0.001 6 (stat., 8.0 ppm)

± 0.001 3 (sys., 6.4 ppm) GHz
(total uncertainty = 10 ppm)

Favors QED
calculation
(Consistent with 

theory within 1.1s, 
disfavors previous 
experiments by 

2.6s )

Result 2: Ps thermalization effect = 10 ppm
Fittings of resonance lines WITHOUT 
taking into account the time evolutions (Ps thermalization)

→ Gives 10 ± 2 ppm smaller Ps-HFS value in vacuum

Ps thermalization effect is crucial for precision 
measurement of Ps-HFS.

(c2/ndf=721.1/592, p=2x10-4)

This difference is large enough to explain the 16 ± 4 ppm discrepancy. 

c2/ndf = 633.3 / 592 (p = 0.12)

Data are well described by theory.

Measurement in vacuum using slow positron beam      
(hopefully better than 1 ppm result within 4—5 years)

Large bore 
superconducti
ng magnetPositron beam

(ns pulsed) Ps formation
(Hot metal /    

porous Silica)

Ps

RF

• High statistics (scan in vacuum instead of extrapolation, 
higher power RF without discharge)

• Completely free from material effect
• Short measurement period reduces systematic errors

Future prospects


