New precise measurement of the hyperfine splitting of positronium

A Ishida^{1,*}, T. Namba¹, S. Asai¹, T. Kobayashi¹, H. Saito², M. Yoshida³, K. Tanaka³, A. Yamamoto³

¹Department of Physics, Graduate School of Science, and International Center for Elementary Particle Physics (ICEPP), **The University of Tokyo**, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN ²Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, JAPAN ³High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, JAPAN

Positronium and its hyperfine structure (HFS)

Positronium (Ps)

- The bound state of an electron (e-) and a positron (e+)

Hyperfine splitting (HFS)

- The energy splitting between o-Ps and p-Ps
- The value of HFS

Experimental average

203.388 65(67) GHz (3.3 ppm)

Theory

203.3**91 90**(25) GHz (1.2 ppm)

Measurement using the Zeeman effect

How to measure the HFS?

In a static magnetic field, the p-Ps state mixes with the m₇=0 state of o-Ps (Annihilate into 2 γ -rays).

Precisely measure the Δ_{mix} and calculate $\Delta_{\rm HFS}$ by the equation,

$$\Delta_{mix} \approx \frac{1}{2} \Delta_{HFS} \left(\sqrt{1 + 4x^2} - 1 \right)$$

This is not precise enough, so we solve time evolution of density matrix.

Transition \rightarrow **2** γ **decay rate increases**.

0.2

0.0

1.0

0.8

0.6

B [T]

- The measured values are **consistent with** each other and lower than the theoretical Calculations

16 ppm (4.5 σ) significant discrepancy

Possible systematic uncertainties in the previous experiments

- Non-uniformity of the magnetic field
- 2. Underestimation of the material effect

- Unthermalized o-Ps effect can be significant *cf.* o-Ps lifetime puzzle (1990's)

Experimental setup

To reduce possible systematic uncertainties, we use the following new methods.

Comparison of timing spectra

- power.
- 50—440 ns is divided to 11 sub timing windows.
- Simultaneous fit of all of the gas density, magnetic field strength, and (sub) timing windows.

Time evolution of Ps velocity (thermalization) and Δ_{HFS} ($\propto nv^{3/5}$) is taken into account (Thanks to Prof. A. P. Mills, Jr. (UC Riverside) for useful discussions)

New result taking into account the Ps thermalization is: $\Delta_{\text{HFS}} = 203.3942 \pm 0.0016$ (stat., 8.0 ppm)

± 0.001 3 (sys., 6.4 ppm) GHz

(total uncertainty = 10 ppm)

- Result 2: Ps thermalization effect = 10 ppm Fittings of resonance lines WITHOUT taking into account the time evolutions (Ps thermalization)
 - \rightarrow Gives **10 ± 2 ppm smaller** Ps-HFS value in vacuum $(\chi^2/ndf=721.1/592, p=2x10^{-4})$

TIME (ns) Lifetime is clearly shortened by RF due to the Zeeman transition.

This difference is large enough to explain the 16 ± 4 ppm discrepancy.

Ps thermalization effect is crucial for precision measurement of Ps-HFS.

Future prospects

Measurement in vacuum using slow positron beam (hopefully better than 1 ppm result within 4-5 years)

- High statistics (scan in vacuum instead of extrapolation, higher power RF without discharge)
- Completely free from material effect
- Short measurement period reduces systematic errors

