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Positronium and its hyperfine structure (HFS)

Positronium (Ps)

- The bound state of an electron (e-) and
a positron (e+)

- The energy splitting between o-Ps and p-Ps

Hyperfine splitting (HFS)

- The measured values are consistent with

each other and lower than the theoretical

Calculations

How to measure the HFS?

Experimental setup

2. Non-uniformity of the magnetic field

- It's quite difficult to get ppm level uniform field in a large Ps creation
volume

1. Underestimation of the material effect

- Unthermalized o-Ps affect seriously (especially at low material
density). ← o-Ps lifetime puzzle (1990's)

To reduce possible systematic uncertainties, we use the following new methods.

Large bore superconducting magnet

β β β β - tagging system

High performance gamma-ray detectors

Current status Result coming soon

- Time spectrum between positron emission 
and γ-detection is measured.

- LaBr3 (Ce) scintillators (x 6)
1.5” in diameter & 2.0” long

- High energy and timing resolutions, and 
short decay constant

enable high statistical counting.

- Get uniform magnetic field (~0.866 T) in a large volume.
(1.5 ppm RMS uniformity with compensation coils.)

Measurement using the Zeeman effect
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significant discrepancy

Transition → 2 γ decay rate increases.
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Possible systematic uncertainties

in the previous experiments

Precisely measure the ∆mix and calculate 
∆HFS by the equation, 

In a static magnetic field, the p-Ps state 
mixes with the mZ=0 state of o-Ps

(Annihilate into 2 γ-rays).

(1) Only well thermalized Ps are selected, 

reducing the unthermalized o-Ps 

contribution by imposing a time 
selection.

(2) S/N of the measurement is significantly 

improved by factor 20.
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- The value of HFS

Experimental average

203.388 65(67) GHz  (3.3 ppm)

Theory

203.391 69(41) GHz  (2.0 ppm)
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Work in progress

Experimental average at vacuum
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Now we are checking our data 
finally.
We will fix the final result very 
soon.

RF ON
RF OFF

Suppress Prompt and Accidental 

backgrounds with a Timing window of 

35 ns – 155 ns

Short Component
(mz = 0) Long Component

(mz = ±1)

→ 20 times higher S/N

Unthermalized o-Ps events 

are also suppressed.
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High S/N

RF ON

RF OFF

Accidental is subtracted 
using TW of 950—1350 ns

2γγγγ decay rate increases because of the Zeeman 
transition. Zeeman transition probability is calculated 
from the difference between RF-ON and RF-OFF.

HFS is measured at many gas 
densities to correct the 
material effect.
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30 kPa (4)

Timing specta

Energy specta

Resonance line

Fitted by theoretical 
line calculated from 
Hamiltonian

Ps thermalization

Ps thermalization function is 
measured using a Ge detector 
to estimate the non-
thermalized Ps effect.

σm = 61     Å,E0 = 0.20        eV
are obtained preliminary.

+7
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pick-off probability (∝ v3/5 in isobutene)) is 
measured as a function of time.

200 mm

RF cavity
f0 = 2.857 GHz
Q = 14,000
TM110 mode

Filled with pure 
isobutene (i-C4H10) gas

Measurements are 
performed from July 
2010 to March 2013.


