Precise Measurement of HFS of Positronium using Zeeman Effect

<u>A. Ishida¹</u>, G. Akimoto¹, Y. Sasaki¹, A. Miyazaki¹,
K. Kato¹, T. Suehara¹, T. Namba¹, S. Asai¹, T. Kobayashi¹,
H. Saito², M. Yoshida³, K. Tanaka³, A. Yamamoto³,
Y. Urushizaki⁴, I. Ogawa⁴, T. Idehara⁴ and S. Sabchevski⁵

¹Department of Physics and ICEPP, the University of Tokyo
 ²Institute of Physics, the University of Tokyo
 ³High Energy Accelerator Research Organization (KEK)
 ⁴FIR Center, University of Fukui
 ⁵Bulgarian Academy of Science
 ASR 2009 @ Tokai 11/11/2009

Outline

- Positronium Hyperfine Splitting (Ps-HFS)
- Our new experiment
- Results of the prototype run
- Next steps

Positronium Hyperfine Splitting (Ps-HFS)

Energy difference between two spin eigenstates of the ground state Ps \rightarrow Ps-HFS S = 1 (spin triplet) orthopositronium (**o-Ps**, $1^{3}S_{1}$) e^+ e⁻ \rightarrow 3 γ (, 5 γ , ...) $(\tau = 142 \text{ ns})$ S = 0 (spin singlet) parapositronium $(p-Ps, 1^{1}S_{0})$ e⁻ e⁺ \rightarrow 2 γ (, 4 γ , ...) $(\tau = 125 \text{ ps})$

Discrepancy Between Experiments and Theory

Possible reasons for the discrepancy

- Mistakes in the theoretical calculations
 - The bound state QED is still developing. ($O(\alpha^3)$ calculation)
 - Non-relativistic QED (NRQED) might be wrong.
- Common systematic uncertainties in the previous experiments
 - Underestimation of material effects. Unthermalized o-Ps can have a significant effect especially at low material density. *cf. o-Ps lifetime puzzle (1990's)*
 - Non-uniformity of the magnetic field. It is quite difficult to get ppm level uniform field in a large Ps formation volume.
- New physics beyond the Standard Model

Experimental Technique Indirect Measurement using Zeeman Effect

In a static magnetic field, the p-Ps state mixes with the m_z=0 substate of o-Ps. \rightarrow Annihilate into 2 γ -rays

When a microwave field with a frequency of Δ mix is applied, transitions between the m_z=0 and m_z=±1 substates of o-Ps are induced.

 → 2γ-ray annihilation (511 keV monochromatic signal) rate increases.
 This increase is our experimental signal.

$$\begin{split} \Delta_{mix} &= \frac{1}{2} \Delta_{HFS} \left(\sqrt{1 + x^2} - 1 \right) \\ x &= \frac{2g' \mu_B H}{\Delta_{HFS}} \quad \stackrel{\rightarrow \text{This is the same}}{\Rightarrow \text{This is the same}} \\ \text{approach as previous} \\ \text{experiments.} \end{split}$$

P-32 poster

Our Experimental Setup Prototype Run (29 Jun – 18 Sep) @KEK

500 W 2.9 GHz RF (CW)

Large bore superconducting magnet Bore diameter = 80cm

Large bore → Uniform Persistent Current mode → Stable

Cavity and detectors at the center of the magnet.

Center of the Magnet

Results of the Prototype Run

Energy Spectra

Timing Spectra

511 keV

Resonance Line

 Δ HFS = 203.385 ± 0.003 GHz (14 ppm, statistical error only)

Systematic Errors

	Systematic errors	(ppm)	Systematic errors	(pp		
	Non-uniformity of the magnetic field	22	RF Frequency			
			Q-value of the cavity			
	Analysis method	< 40	Magnetic field correction			
	Line-shape correction	< 20	Stability of the magnetic			
	Gas pressure dependence	8	field			
	Thermalization of Ps	< 20	NMR measurement			
			Quadrature sum			

Further analysis will reduce these uncertainties.

Preliminary value of Ps-HFS by 1.5 and 1.0 atm measurement is 203.385 ± 0.003 (14 ppm, stat.) ± 0.011 (56 ppm, sys.) GHz Consistent with both of the previous experimental values and with the theoretical value. Improvements must be made for future measurements.

6

10

4

2

2

56

Next Steps

- Compensation magnets will be installed and O(ppm) magnetic field uniformity is expected to be achieved.
- Measurements at various pressures of gas will be performed to estimate the material effect (the Stark Effect).
- We can precisely measure the Ps thermalization effect using the timing information.
- We will begin the final run within one year.
- A measurement with a precision of O(ppm) is expected within a few years.

Conclusion

- There is a 3.9 σ discrepancy in the ground state Ps-HFS between the experimental results and the QED prediction.
- A new experiment to measure the Ps-HFS which reduces possible common uncertainties in previous experiments has been constructed.
- The preliminary value of Ps-HFS with an accuracy of 58 ppm has been obtained from our prototype run.
- A new result with an accuracy of O(ppm) will be obtained within a few years which will be an independent check of the discrepancy.

Backup

Two Spin Eigenstates of Positronium

Material Effect

When a positronium collides with surrounding matters, its energy levels shift because of the electric field of the matters (the Stark effect)

This effect is proportional to the collision rate. \rightarrow It is proportional to the matter density if the velocity of positronium is constant.

Ps Thermalization Problem

Formed o-Ps has a kinetic energy of about 1 eV.

o-Ps deposits its energy to the room temperature (1/30 eV) by collision with surrounding materials (the thermalization process).

In the previous experiments, it was assumed that the thermalization occurs immediately so that the velocity of Ps is approximately constant. $\frac{0.05}{2}$

But,

If it takes much time to thermalize, the material effect (\propto collision rate) is not proportional to material density.

In fact, **it affects seriously** ("o-Ps lifetime puzzle" (1990's)).

→ <u>Ps thermalization effect can be a</u> <u>serious systematic error in Ps-HFS</u> <u>measurement.</u>

Gas Pressure Dependence

The pressure dependence is not clarified by our results of the prototype run, but it is consistent with the previous experiment. → Apply a correction of -33 ppm/atm (Ritter et al., 1984)

23

Magnetic Field Measurement

- Non-uniformity of the magnetic field is serious systematic uncertainty.
- Non-uniformity in the RF cavity is 23 ppm (RMS).

Weight 1. RF Power distribution

Energy distribution of RF magnetic field

Weight 2. Positron Stop Position

Table of Scintillator Properties

Scintillator	Density	Refractive index	Photons per MeV	Emission Maximum	Decay Constant	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃ (Ce)	5.29	1.9	63000	380	25.6	1.88