Precise Measurement of Hyperfine Splitting of Positronium using Zeeman Effect

<u>A. Ishida¹</u>, G. Akimoto¹, Y. Sasaki¹, T. Suehara², T. Namba², S. Asai¹, T. Kobayashi², H. Saito³, M. Yoshida⁴, K. Tanaka⁴, A. Yamamoto⁴

¹Department of Physics, the University of Tokyo ²International Center for Elementary Particle Physics (ICEPP), the University of Tokyo ³Department of General Systems Studies, the University of Tokyo ⁴High Energy Accelerator Research Organization (KEK) PSPA10 @ Kazimierz Dolny 23/06/2010

Outline

- Positronium Hyperfine Splitting (Ps-HFS)
- Our new experiment
- Results of the prototype run
- Prospects & Current status

Positronium Hyperfine Splitting (Ps-HFS)

Energy difference between two spin eigenstates of the ground state Ps \rightarrow Ps-HFS

Discrepancy Between Experiments and Theory

Possible reasons for the discrepancy

- Common systematic uncertainties in the previous experiments
 - Underestimation of material effects. Unthermalized o-Ps can have a significant effect especially at low material density. *cf. o-Ps lifetime puzzle (1990's)*
 - Non-uniformity of the magnetic field. It is quite difficult to get ppm level uniform field in a large Ps formation volume.
- Mistakes in the theoretical calculations
 - The bound state QED is still developing. (O(α^3) calculation)
 - Non-relativistic QED (NRQED) might be wrong.
- New physics beyond the Standard Model

Experimental Technique Indirect Measurement using Zeeman Effect

In a static magnetic field, the **p-Ps** state mixes with the **m_z=0 state of o-Ps** (Annihilate into 2 γ-rays).

Precisely measure the $\Delta_{\rm mix}$ and calculate $\Delta_{\rm HFS}$ by the equation,

$$\begin{split} \Delta_{mix} &= \frac{1}{2} \Delta_{HFS} \Big(\sqrt{1 + 4x^2} - 1 \Big), \\ x &= \frac{g' \mu_B B}{\Delta_{HFS}}. \end{split}$$

Experimental Technique Indirect Measurement using Zeeman Effect

When a microwave field with a frequency of Δ_{mix} is applied, transitions between the m_z=0 and m_z=±1 states of o-Ps are induced.

 → 2γ-ray annihilation (511 keV monochromatic signal) rate increases.
 This increase is our experimental signal.

→This is the same approach as previous experiments.

To reduce the systematic uncertainties, we use the following new methods.

To reduce the systematic uncertainties, we use the following new methods.

To reduce the systematic uncertainties, we use the following new methods. • β -tagging system and timing information (1) Prompt suppression (\rightarrow Next page) (2) Directly measure the Ps thermalization effect ²²Na (700 kBq) 75 mm

Prompt Suppression

To reduce the systematic uncertainties, we use the following new methods.

To reduce the systematic uncertainties, we use the following new methods.

Our Experimental Setup Prototype Run (2 Jul – 24 Sep '09) @KEK

Large bore superconducting magnet

Trigger rate ~ 3.6 kHz DAQ rate ~ 600 Hz RF-ON measurement in the daytime, RF-OFF measurement in the nighttime and on holidays.

Waveguide

Cavity and detectors at the center of the magnet.

Center of the Magnet

Analysis

Resonance Lines

17

Result of the prototype run

Our system has worked well.
The result of the prototype run is consistent with the previous experiments and the theory.

Ps-HFS obtained from the Prototype Run: $\Delta_{HFS} = 203.3804 \pm 0.0022$ (stat., 11 ppm) ± 0.0081 (sys., 40 ppm) GHz

Systematic Errors

	Source	ppm in $\Delta_{ extsf{HFS}}$
Magnetic Field	Non-uniformity	21
	Offset and reproducibility	4
Detection Efficiency – estimation	NMR measurement	2
	Method	18
	Statistics of MC simulation	17
	Q _L value of RF cavity	6
RF System –	RF power	5
Material Effect	RF frequency	5
	Thermalization of Ps	<20
	Gas density dependence	7
	Quadrature sum	40

Prospects & Current status

- <u>Magnetic Field</u>: Compensation magnets \rightarrow O(ppm) magnetic field uniformity (Done \rightarrow Next page)
- Material Effect: Measurements at various pressures of gas → Estimate the Stark Effect (Final measurement) Precisely measure the Ps thermalization

(Now taking data)

- <u>RF System</u>: The experimental environment (temperature) control → Almost cleared.
- <u>Statistics</u>: 85-day prototype run achieved 11 ppm. A measurement with a precision of O(ppm) is expected within a few years.
- <u>Detection efficiency</u>: Will be carefully studied and will be estimated by real data.

 \rightarrow O(ppm) systematic error. (Not yet)

Compensation Magnet

the cavity flange.

 They make the opposite field and reduce the gradient.

0.9 ppm (RMS) uniformity in the Ps formation volume (10.4 ppm w/o coils) \rightarrow It is installed in the final run setup.

Conclusion

- There is a 3.9 σ discrepancy in the ground state Ps-HFS between the experimental results and the QED prediction.
- We propose a new experiment to measure the Ps-HFS with timing information.
- Our experiment reduces possible common uncertainties in previous experiments (Non-uniformity of magnetic field, Ps thermalization effect).
- The prototype run has been performed.
- The preliminary value of Ps-HFS with an accuracy of 41 ppm has been obtained from the prototype run.
- A new result with an accuracy of O(ppm) will be obtained within a few years which will be an independent check of the discrepancy.