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→ Ps-HFS  (203 GHz)
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Positronium Hyperfine Splitting (Ps-HFS) 
and its characteristics
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Quantum oscillation effect
is also large (40%)
→ Sensitive to new physics beyond SM

spin-spin 
interaction
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History of Ps-HFS
Experiment

Theory

• First measurement by M. Deutsch and S.C. Brown (1952, 1500 ppm).
• Most precise measurements by two independent groups:

A.P. Mills, Jr. and G.H. Bearman (1975 and 1983, 8 ppm),
M.W. Ritter, P.O. Egan, V.W. Hughes, and K.A. Woodle (1984, 3.6 ppm).

• Our new precise measurement taking into account the Ps thermalization

effect (A. Ishida et al., 2014, 10 ppm).

Pure
bound-state QED

• First term calculated by J. Pirenne (1947).
• O(mα7ln(1/α)) was calculated by three groups (2000).
• O(mα7) non-logarithmic term calculation are ongoing since 2014, 

motivated by our experimental result and many other efforts.
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Ps-HFS Puzzle: Discrepancy Between 
Previous Experiments and Theory

Previous
experimental 
results are 
consistently 
lower than 
theory.

O(mα7lnα-1)
+ some of O(mα7) 

QED theory
203.391 89(25) GHz 

(1.2 ppm)

16 ppm (4.5 σ) significant discrepancy
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Previous 
experimental   
average 
203.388 65(67) GHz

(3.3 ppm)



Ps thermalization effect on Ps-HFS
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<Simulation of material effect correction from density + thermaliaztion. 
Time evolution of Ps-HFS has not been taken into account.>
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(σm , E0)=
DBS:(13.0×10-16 cm2 , 2.07 eV)
ACAR:(37×10-16 cm2 , 2.07 eV)
RF frequency = 2.32 GHz
RF magnetic field =10 Gauss
Static magnetic field = 0.78 Tesla
Experiment: Hughes et al. (1984)
Theory: Kniehl et al. (2000)

O(10 ppm) correction in N2 case:
•Put the experimental value close to the theory.
•Significant correction which cannot be ignored.
•Different techniques give different corrections.

→Main reason of large uncertainty
→Measured the thermalization independently.

Work in progress Work in progress
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Details of Our New Experiment



Used new techniques to reduce 
the possible reasons of the puzzle

Two possible common systematic uncertainties in the 
previous experiments

1. Non-uniformity of the magnetic field. 

2. Underestimation of material effects. Unthermalized o-Ps 
effect can be significant 

cf. o-Ps lifetime puzzle (1990’s)

• Large-bore superconducting magnet to reduce the 
uncertainty 1.

• Time information (by β-tagging system and high-performance 
γ-ray detectors) to reduce the uncertainty 2.
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Our New Experimental Setup
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β-tagging system
→Solve systematic error 
from non-thermalized Ps.

High performance 
γ-ray detectors
(LaBr3 scintillators)

→Solve systematic 
error from non-
thermalized Ps.

High power RF 
(500W CW)

Large bore 
superconducting 
magnet + 
compensation coils
→Solve systematic 
error from 
non-uniformity of 
magnetic field.
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New technique 1: 
Large-bore superconducting magnet

Bore diameter 
= 80 cm

(Length = 2 m)
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1.5 ppm (RMS) 
uniformity in the large 
Ps formation volume

(~ 100 cm3).

Ps formation 
volume

Top View

Axial View



New technique 2: 
Time Information

• Tag e+ from the 22Na by thin 
(0.1 mm) plastic scintillator.

→ t=0

RF Cavity
RI Source
(22Na 1 MBq)

Ps

Plastic 
Scintillator

e+
g

g
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Suppress Prompt events
by a Timing window
(50 ns – 440 ns)

• Treat Ps thermalization 
correctly

• 20 times higher S/N

@ 0.881 
amagat

Accidental 
spectrum is 
already 

subtracted.



Fitting of resonance lines
taking into account time evolution of Ps-HFS
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• Scanned by Magnetic Field with the fixed RF frequency and power. 
• 50—440 ns was divided to 11 sub timing windows. 
• Simultaneous fit of all of the gas density, magnetic field strength, and (sub) 

timing windows.
• Time evolution of Ps velocity (thermalization) and ΔHFS (∝ nv3/5 ) were taken 

into account        (Thanks to Prof. A. P. Mills, Jr. (UC Riverside) for useful discussions)

Slow change at 
low gas density.

Ps velocity / c Ps-HFS

O(100 ppm) change
before 50 ns

O(10 ppm) change
after 50 ns

χ2/ndf = 633.3 / 592 (p = 0.12)



Result 1: Center value favored QED

New result taking into account the Ps thermalization was obtained:
ΔHFS = 203.394 2 ± 0.001 6 (stat., 8.0 ppm)

± 0.001 3 (sys., 6.4 ppm) GHz
(total uncertainty = 10 ppm)
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Favors QED
calculation

(Consistent with 
theory within 

1.1σ, 

disfavors 
previous 
experiments by 

2.6σ )

Main systematic errors: 
Material effect (o-Ps pickoff, spatial distribution of density and temperature in the RF cavity),
Magnetic field (non-uniformity)



Result 2: Ps thermalization effect = 10 ppm

→ Gave 10 ± 2 ppm smaller Ps-HFS value in vacuum
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Ps thermalization effect is crucial for 
precision measurement of Ps-HFS.

Fittings of resonance lines WITHOUT 
taking into account the time evolutions (Ps thermalization)

= similar method as the previous experiments

(χ2/ndf=721.1/592, p=2x10-4)

This difference is large enough to explain the 16 ± 4 ppm discrepancy. 



Future prospects

Measurement in vacuum using slow positron beam

(hopefully better than 1 ppm result within 4—5 years)
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• High statistics (scan in vacuum instead of 
extrapolation, higher power RF without discharge)

• Completely free from material effect
• Short measurement period reduces systematic 

errors



B (0.866 T)

22Na
(1 MBq)

High power RF 
(500W CW)

(Current Experimental Setup)

Ps
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RF cavity
(Filled with pure i-C4H10)
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B (0.866 T)

Ps formation in 
vacuum (> 40%)
(Hot metal or 
Porous Silica)

High power RF 
(500W CW)

Future Experimental Setup

γ-ray detectors x 12
Digitization of waveforms of detector signals
(~100% separation for Δt > 8 ns (preliminary))

Ps

Pulsed (< 2ns, > 50 Hz) 
O(keV) positron beam
> 106 e+/s

→ 1 ppm result by a few-week run

RF cavity (vacuum)



Conclusion
• Ps-HFS puzzle: a large 4.5 σ discrepancy of Ps-

HFS between the previous experimental values and 
theoretical calculation. 

• New precise microwave spectroscopy using the 
Zeeman effect was recently performed.
Used new techniques to reduce possible systematic 

uncertainties in the previous experiments (Non-thermalized Ps 
effect and Non-uniformity of magnetic field). 

ΔHFS = 203.3942(21) GHz (10 ppm)   Favors QED calculation

Ps thermalization effect was found to be as large as 10 ± 2 
ppm.

• Future measurements will be performed in vacuum 
using slow positron beam (hopefully a new result 
within 4—5 years).
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