ポジトロニウムの 超微細構造の精密測定

東大理,東大素セ^A,東大院総合文化^B,KEK^C,福井大遠赤セ^D

<u>石田明</u>, 秋元銀河, 加藤康作, 末原大幹^A, 難波俊雄^A, 浅井祥仁, 小林富雄^A, 斎藤晴雄^B, 吉田光宏^C, 田中賢一^C, 山本明^C, 小川勇^D, 小林真一郎^D, 出原敏孝^D

> ICEPPシンポ 2009年2月25日 於白馬

概略

ポジトロニウムの超微細構造(203GHz)の精密測定

- 1. Zeeman効果を用いた間接測定
- 2. 大強度サブテラヘルツ波を用いた直接測定 1.は <u>磁場中で RF をPsに加えて</u> 測定する。 昔の実験の問題点として、 <u>磁場の非一様性 物質の効果</u> が挙げられる。
- β-tagging System (時間情報->物質の効果)
- ・ガンマ線検出器
- 新しい2γ-taggingの方法
- 検出器全体の設計図
- ・ テスト実験
- 大強度サブテラヘルツ波を用いた直接測定
- まとめと展望

90度曲げる

2次元分布

β-tagging system 厚さ200 µmの プラスチックシンチレータ を用いてβ線をtag ->時間情報に用いる。 Tiホイル (16µm)の奥に²²Na線源 ,プラスチックシンチレーション ファイバー(φ 2 mm) (中央部は t 200 µm, **φ**4 mmに潰してある) PS PE 2D Entries 3218371 PHOTOELECTRONS 3.952 Mean x Mean v 3.629 RMS x 2.393 RMS y 2.342 25(20(15(10 PMTで得られた光量の 50(10 PHOTOELECTRONS

ここから出る光を 2つのPMTで検出 外側 ガス

ガンマ線検出器

新しい2γ-taggingの方法

2γ崩壊と 3γ崩壊の比から、HFS を求める → 2γを正確に tag する必要 2つの方法

高いエネルギー分解能(4% FWHM @ 511 keV)をもつ LaBr₃シンチレータを使うことで、Energy tagging が可能 -> 約50倍高い統計が得られる(短期間で測定可能)

検出器全体の設計図

ファインメッシュPMTを用いて、高磁場中での実験を可能にする。 PMTの分解能(エネルギー、時間)への磁場の影響を最小限に抑 えるため、PMTは磁場と平行に設置。 ライトガイド

昨年11月半ばから 約1ヶ月間、 KEK低温センターにて テスト実験を実施。

我々の方法で 遷移を測定できる ことの確認を目標に、 On-resonance (0.866 T)および Off-resonance (on-resonanceから 約5σ(60Gauss)離 れた点)の2点で 測定を行った。

Timing window & Energy cut

安定性

ັ 1916 ເສ ອີງ914

1912

1910

1908

1906

0

Timing cut 後のRateは これらの図はRF 91 W 安定していない。 m_g_all_sec500_rate χ^2 / ndf 46.13 / 9 Constant 1914 ± 0.6187 比を用いることで統計の 範囲でよく安定する。 m g sec500sum ratio2 χ^2 / ndf 8.857/9 Constant0.2689 ± 0.0002147 0.271 0.2705 0.27 0.2695 1000 4000 2000 3000 LIVE 0.269 0.2685 0.268 0.2675

1000

0

2000

3000

4000

5000

LIVETIME (sec)

スペクトルの比較

一次の補正を行い、スペクトルの比較をした。

ちなみに全体

Current Result (1) 磁場 On-resonance で、 511 +/- 50 keVのイベントの全イベントに対する比を、 RF on/off で比較。

Current Result (2)

条件	比	統計誤差	χ²/ndf
RF-OFF	0.26729	0.00013	0.90
57 W RF	0.26829	0.00017	0.97
91 W RF	0.26885	0.00021	0.98
比較条件	比	統計誤差	Excess by σ
57 W / OFF	1.00374	0.00081	4.6
91 W / OFF	1.00586	0.00092	6.4
91W / 57W	1.57	0.34	1.6
•x ² /ndfが1程度->時間的に安定している。 •Excessは5oで言える。 •91Wのexcessは57Wの1.57倍で、Powerに比例			Transitionを 確認

大強度サブテラヘルツ波を用いた 直接測定

福井大遠赤センターと共同で開発して いるジャイロトロンを用い、203GHz, 100Wの大強度サブテラヘルツ波で HFSを直接遷移させて測定。 ->世界初の測定

Zeeman効果を使った間接測定と異なり、 磁場の不定性・非一様性からくる系統 誤差(間接測定の最大の系統誤差)がない。

Ps生成領域にエネルギーをためるための共振器として、ファブリー・ペロー共振器を用いる

->現在、設計・製作・測定中 17

まとめと展望

- ・ポジトロニウムのHFS精密測定
 - 1. Zeeman効果を用いた間接測定
 - 2. 大強度サブテラヘルツ波を用いた直接測定
- β-tagging System, ガンマ線検出器の設計・製作
 と試験を行い、検出器全体の設計をした。
- ・11月半ばから約1ヶ月間テスト実験を実施。
- テスト実験によって、On-resonanceでの遷移を 5oで確認。
- 今後は磁場の精度をppmまで高めるとともに、
 ガンマ線検出器の設計を改善し、5月頃に
 O(ppm)の精度での測定を目指す。

Backup

DAQ 概略 (LaBr3 single & PS coincidence)

・それぞれDiscriの出力をTDC stopに 入れ、PSはアンプ後、LaBr3はLinear Fan-in/outで分けた出力をQDCへ。