ポジトロニウム 超微細構造の精密測定II (ガンマ線検出器の設計)

東大理、東大素セ^A、東大院総合文化^B、福井大遠赤セ^C

<u>石田明</u>、秋元銀河、Mark M. Hashimoto^A、難波俊雄^A、 浅井祥仁、小林富雄^A、斎藤晴雄^B、出原敏孝^c

日本物理学会 第63回年次大会 於 近畿大学本部キャンパス

Outline

ポジトロニウム 超微細構造の精密測定 (1)時間情報を加えた HFS の精密測定 (2)大強度サブテラヘルツ光による直接測定

いずれの場合にも用いるガンマ線検出器(LaBr₃, Ge)の設計

- 1. 2γ崩壊をどうやって tag するか
- 2. LaBr₃ Scintillator の諸特性
- 3. Geant4 を用いた estimation
- 4. 磁場中での検出器の動作((1)に関連)

2γ崩壊

2γ崩壊と3γ崩壊の比から、HFSを求める → 2γを正確にtag する必要 2つの方法

Energy でやるなら、高いエネルギー分解能が求められる

→ LaBr₃、Geの利用

本番では2インチの予定

高い Energy 分解能 3.5% FWHM

速い:時間分解能が良い(熱化過程を測定) 遅い成分がない:強い線源強度可能 高いエネルギー分解能: Energy で 2γ を tag

LaBr₃ energy resolution

LaBr₃ timing resolution

高い時間分解能 → 熱化過程の測定が可能

$LaBr_3 \mathcal{O}$ Background

Detector geometry

RF cavity を取り囲むように 8 個の γ 線検出器を配置。

2 個の Ge 検出器は 熱化過程を測定するのに 用いる。

6 個の LaBr₃ 検出器により、 2 γ 崩壊を捉える。 これらを Back-to-back に 配置。

LaBr₃の読み出しには Fine Mesh PMTを使用。 磁場との角度を30°に 設定 → 後述

Estimation (1)

Estimation (2)

期待される1日当たりのカウント(前頁の仮定で)

	Back-t	o-back	Energy		
	全数	内訳	全数	内訳	
Transition が	1.9×10^{4}	$2 \gamma 1.1 \times 10^4$	3.0×10^{6}	$2 \gamma \qquad 8 \times 10^5$	
起こっていないとき		3γ 8×10^{3}		3γ 2.2×10^{6}	
Transition が	5.0×10^{4}	$2 \gamma 4.3 \times 10^4$	5.2 × 10 ⁶	$2 \gamma 3.2 \times 10^6$	
起こっているとき		3γ 7 × 10 ³		$3\gamma~2.0\times10^6$	

(511 keV は FWHM で cut)

Back-to-back (geometrical information) \rightarrow Energy information で $\begin{bmatrix} 2 \gamma \text{ count } ll & 74 \ All \\ 3 \gamma \text{ count } ll & 290 \ Black \\ S/N 悪化は高々 4 \ Black \\ & \rightarrow LaBr_3 + Energy tag ll 非常に良い方法 \\ & \rightarrow co方法で測定$

磁場中での動作(1)

Figure 2: Typical Gain in Magnetic Fields

MAGNETIC FIELD SUPPLY VOLTAGE : 2000V

Odeq.

TPMHB0247EB

101

100

10-1

10-2

1. LaBr₃の読み出し

高磁界用光電子増倍管 (Fine Mesh) (HAMAMATSU R5924-70の予定) 磁場に対して 30°で用いれば Typical Gain at 0.8 T ~ 10⁶ (磁場なしの場合の ~ 0.1) → 使用可能

2. Ge detector

10-3 0.25 1.25 0.50 0.75 1.0 1.5 n 現在、0.12~0.25 T でテスト中 MAGNETIC FIELD (Tesla) Energy resolution, detection efficiency は HAMAMATSU R5924-70 測定誤差の範囲で一致。 Gain も 10 ppm 程度で不変。→より高い精度で調べる必要 近い内に実際の磁場をかけてテスト予定 Timing は次頁。

Conclusion

- Ge と LaBr₃ + Fine Mesh PMT を用いて、高速でかつ非常に
 高いエネルギー分解能を持つガンマ線検出器を設計。
- 2γ崩壊をtag するには2通りの方法があるが、Energy Informationを用いることでカウントを稼ぐ(70倍)。
 个 Ge、LaBr₃の高いエネルギー分解能を最大限に活用し、 高い S/N、Collection efficiency での測定を可能にした。
- 夏までに磁場中でのテスト、最終設計を終え、秋に
 (1)時間情報を加えた HFS の精密測定を開始。

Back Up

Table of Scintillator Properties

Scintillator	Density	Refractive index	Photons per MeV	Emission Maximum	Decay Constant	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃	5.29	1.9	63000	380	25.6	1.77

Estimation Factors

•	Source	1 MBq	(²² Na)
•	β ⁺ decay Intensity	89.89 %	Geant4 data
•	Run Time	86400 s	(/day)
•	Plastic Scintillator Tag	5.2 %	Geant4 Simulation in N ₂ (1 atm)
	(>60keV) & Stop In Cavity		& 200 μm Plastic Scintillator
•	Generation Prob. of Ps	20 %	Phys. Rep. <u>39</u> , 169 (1978)
•	Spin Factor	50 %	(2/4)
•	Expected events / day	4.0×10^{8}	
•	Pick off ratio	3.4 %	Phys. Rev. A <u>18</u> , 1426 (1978)
•	Transition probability	10 %	Phys. Rev. A <u>2</u> , 707 (1970)