ポジトロニウム 超微細構造の精密測定III (ガンマ線検出器)

東大理,東大素セ^A,東大院総合文化^B,高工研^C,福井大遠赤セ^D

<u>石田明</u>,秋元銀河, Mark M. Hashimoto,田川智博, 末原大幹^A,難波俊雄^A,浅井祥仁,小林富雄^A,斎藤晴雄^B, 吉田光宏^C,小川勇^D,小林真一郎^D,出原敏孝^D

日本物理学会 2008年秋季大会 於 山形大学小白川キャンパス

ポジトロニウム 超微細構造の精密測定 2つの実験計画 (1) 磁場(Zeeman 効果)を用いた間接測定(秋元、Mark) (2) 大強度サブテラヘルツジャイロトロンを用いた直接測定 (次の末原が発表)

この2つで用いるガンマ線検出器の開発を行った。

・特に(1)は高磁場中なので色々な開発を行う必要がある。

- 1. LaBr₃ シンチレータ
- 2. 磁場中でのファインメッシュ PMT
- 3. 検出器の全体像
- 4. ライトガイド
- 5. 2γ崩壊をtag する方法
- 6. Geant4 によるシミュレーション

1. LaBr₃ シンチレータ

2. 磁場中でのファインメッシュ PMT

0.866 T 磁場中に LaBr₃(Ce) シンチレータ(1 inch) ファインメッシュ PMT 1.5 inch намаматsu R7761 2.0 inch намаматsu R5924 を back-to-back に配置

²²Na 線源 (511 keV 2γ back-to-back, 1275 keV γ) を用いて測定。

MRI Magnet (@ KEK)

²²Na

PMT

Ю

PMT

磁場

RELATIVE GAIN

エネルギー分解能の角度(か)依存性

6

時間分解能の角度(か)依存性

<u>4. ライトガイド</u>

Cavity から PMT を遠ざける ために必要。 MT の軸と 磁場の向きを 揃えるため、 光を 90°曲げる

LaBr₃シンチレータ 1 inch ライトガイド 1.5 inch 長さ 5/10/20/40 cm 角度 45/90 deg PMT 2 inch ゴアテックスで巻く

ライトガイドの長さによる光量の変化

5. 2γ崩壊を tag する方法

2γ崩壊と3γ崩壊の比から、HFSを求める → 2γを正確にtag する必要 2つの方法

Energy でやるなら、高いエネルギー分解能が求められる

→ LaBr₃、Geの利用

Geant4 によるシミュレーション (2)

1MBq ²²Na 線源を用いた場合に期待される1日当たりのカウント

	Back-t	o-back	Energy	
	全数	内訳	全数	内訳
Transition が	2.5×10^{4}	$2 \gamma 1.4 \times 10^4$	4.0×10^{6}	2γ 8×10^5
起こっていないとき		3γ 1.1×10^4		3γ 3.3×10^{6}
Transition が	6.4×10^{4}	2γ 5.4 \times 10 ⁴	6.0×10^{6}	$2 \gamma 3.1 \times 10^6$
起こっているとき		3γ 1.0×10^4		3γ 2.9×10^{6}

(511 keV は FWHM で cut)

Back-to-back (geometrical information) \rightarrow Energy information で $\begin{bmatrix} 2 \gamma \text{ count } ll & 57 \oplus ll \\ 3 \gamma \text{ count } ll & 280 \oplus ll \\ S/N 悪化は高々 5 \oplus ll & 280 \end{bmatrix}$ \rightarrow LaBr₃ + Energy tag は非常に良い方法 \rightarrow この方法で測定

纏めと今後の展望

- ポジトロニウムの超微細構造を精密に測定する
 ためのガンマ線検出器を設計した。
- ファインメッシュ PMT の動作特性を、0.866 T の 磁場中で調べた。
- ライトガイドを用いたテストを行った。
- Geant4を用いたシミュレーションに依れば、
 今回の設計で十分な精度が得られる。

・最初の測定を10月末から行う予定。

Backup

磁場中での Ge 検出器

- Ge 検出器は高磁場 (> 500 Gauss) 中では使用不可。
- Ge 検出器を正常に用いることのできる磁場強度の 限界は、Ge の軸と磁場の間の角度に大きく依存。
- ペニング放電によって暗電流が増加している。
 (熱化は磁場なしで測定?)

ライトガイド

全反射条件 アクリル 屈折率 1.49 -> 臨界角 42.2°

90°曲げても明るい

Table of Scintillator Properties

Scintillator	Density	Refractive index	Photons per MeV	Emission Maximum	Decay Constant	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃	5.29	1.9	63000	380	25.6	1.88

Estimation Factors

•	Source	1 MBq	(²² Na)
•	β ⁺ decay Intensity	89.89 %	Geant4 data
•	Run Time	86400 s	(/day)
•	Plastic Scintillator Tag	2.55 %	Geant4 Simulation in N ₂ (1 atm)
	(>60keV) & Stop In Cavity		& 200 µm Plastic Scintillator
•	Generation Prob. of Ps	50 %	Mark の発表
•	Spin Factor	50 %	(2/4)
•	Expected events / day	5.0×10^{8}	
•	Pick off ratio	3.4 %	Phys. Rev. A <u>18</u> , 1426 (1978)
•	Transition probability	10 %	Phys. Rev. A <u>2</u> , 707 (1970)