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Positronium (Ps)

* Bound state of an electron bositron Electron
(e) and a positron (e*) /

* Precision test of bound- @ j
state Quantum Lightest and Exotic Atom

ElectroDynamics (QED).
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Positronium Hyperfine Splitting
(Ps-HFS)
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Experimental

results are
consistently
lower than
theory.

Discrepancy Between
Experiments and Theory
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Phys. Rev. Lett. 85, 5094

Experimental

Phys. Rev. Lett. 34, 246 (1975) average
Shys. Rev. A15, 241 (1977) . 203.388 65(67) GHz
ys. Rev. ,
Phys. Rev. A15, 251 (1977) OodInoct)
Phys. Rev. A27, 262 (1983) QED theory
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Phys. Rev. A30, 1331 (1984) (2.0 ppm)
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15 ppm (3.9 o) significant discrepancy



Possible reasons for the discrepancy

* Common systematic uncertainties in the previous
experiments

1. Non-uniformity of the magnetic field. It is quite difficult to
get ppm level uniform field in a large Ps formation volume.

2. Underestimation of material effects. Unthermalized o-Ps
can have a significant effect especially at low material
density. cf. 0-Ps lifetime puzzle (1990’s)

We proposed new methods free from these
systematic errors.

We will provide an independent check for the
discrepancy.

* Need new development on calculation of bound-state
QED or New physics beyond the Standard Model.



Experimental Technique
Indirect Measurement using Zeeman Effect

| N Indirect """ In a static magnetic field,
Direct measurement the p-Ps state mixes with
measurement
(T. Suehara 3GHz the m,=0 state of o-Ps

tomorrow)

(Annihilate into 2 y-rays).

_ Precisely measure the A,
and calculate A by the
equation,

Calculate A<
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—203
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Experimental Technique
Indlrect Measurement using Zeeman Effect

Zeeman
transition

ZY When a microwave field with a

frequency of Amix is applied,
transitions between the m,=0
and m,=t1 states of o-Ps are
induced.

— 2y-ray annihilation (511 keV
monochromatic signal) rate
Increases.

This increase is our
experimental signal.

—>This is the same
approach as previous
experiments.



Measurement @ KEK
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Our new Experiment

RF SG + pB-tagging system and Large bore
GaN Amp. Timing information superconducting
—>Solve systematic error magnet +
High power RF from nonthermalized Ps. e compensation coils

—>Solve systematic
error from
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Analysis (Timing Spectra)

TIMING SPECTRA === RFON
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@ 10 " -----------------------------------------------------------------------------------------------------------------
S [ [| Suppress Prompt and Accidental backgrounds
% A W|th a Tlmlng window of 35 ns — 155 ns
o 107\ - 20 times higher S/N
5 [/ Unthermalized o-Ps events
3103 = X are also suppressed.
10°% = """ Short Componént \ """" A """""
E | (m, = 0) Long Component
g - i (m, =+1)
10° ||| """ R ARV VS A N
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TIME (ns)
In the previous experiment, the timing information was not taken.

— Previous experimental data were contaminated by significant BGs

& data contained fast (non-thermalized) Ps events.
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Analysis (Energy Spectra)
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transitio

n. Zeeman transition probability is calculated

from the difference between RF-ON and RF-OFF.
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Resonance Line (0.883 amagat)
Scanned by Magnetic Field with the fixed RF frequency and power.
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—> Obtain the Ay in vacuum with density correction.



Gas Density Dependence
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Current Result

Previous experimental average O(c’lno’) QED

Phys. Rev. Lett. 34, 246 (1975)

Phys. Rev. A15, 241 (1977)

Phys. Rev. A15, 251 (1977)

Ly e |

Phys. Rev. A27, 262 (1983)

Phys. Rev. A30, 1331 (1984)

Current Result

I !
203.39
Ayrs (GH2)

| | | | |
203.38 203.385

Current Result
Ay = 203.3905 + 0.0020 (stat., 9.9ppm)
+ 0.0017 (sys., 8.3 ppm) GHz
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Systematic Errors (Current result)

Source ppm in A

Non-uniformity 1.8

%73”8ﬁc — Offset and reproducibility 1.0
NMR measurement 1.0

Detection efficiency | Estimation using MC simulation 5.4
Material effect | Ps thermalization 3.0

B RF Power 2.6

RF — Qvalue of RF cavity 4.2

We can reduce  — RF frequency 1.0

these large Quadrature sum 8.3

systematic errors
as shown in the
next slide.



Prospects

Detection efficiency: Currently it is estimated by Monte Carlo
simulation. It will be carefully studied and will be estimated by
real data. & O(ppm) uncertainty

Material Effect: Currently we assumed that HFS depends on
gas density linearly. If the unthermalized Ps contribution is large,
the dependence is not linear. According to previous
thermalization measurement (Skalsey et al.), thermalization
effect is estimated to be less than 3 ppm with i-C,H,, gas. We are
now precisely measuring the Ps thermalization using different
technique.

RF System: The experimental environment (temperature)
control = O(ppm) uncertainty

Statistics: 9.9 ppm has been obtained. We can achieve 3 ppm
statistical error within about a year by taking more statistically
sensitive points.

A measurement with a precision of
O(ppm) is expected within about a year.
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Conclusion

The current result of

HFS = 203.3905 £ 0,0020 (stat., 9.9 ppm)

+ 0,0017 (sys., 8.3 ppm)
has been obtained so far.

* Our experiment is free from possible common
uncertainties in previous experiments (Non-
uniformity of magnetic field, Ps thermalization
effect).

* A new result with an accuracy of O(ppm) will
be obtained within about a year which will be
an independent check of the discrepancy.
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