ポジトロニウムの 超微細構造の精密測定 || (間接測定の状況と展望)

東大理,東大素セ^A,東大院総合文化^B, KEK^C, 福井大遠赤セ^D,ブルガリア科学アカデミー^E

<u>石田明</u>,秋元銀河,佐々木雄一,宮崎彬,加藤康作, 末原大幹^A,難波俊雄^A,浅井祥仁,小林富雄^A, 斎藤晴雄^B,吉田光宏^C,田中賢一^C,山本明^C, 漆崎裕一^D,小林真一郎^D,小川勇^D,出原敏孝^D,S. Sabchebski^E

Thanks to: 山口博史, K. S. Khaw, 風間慎悟

2009年9月13日 日本物理学会2009年秋季大会 於甲南大学

1

概略

- 全体のシステム
- β-tagging system
- ・ガンマ線検出器
- ・第1回測定と解析
- ・今後の展望
- 補償磁石の仮設計
- まとめ

全体のシステム

Zeeman効果を用いた間接測定

過去の問題点(磁場の非一様性、物質の効果)を解決するため新しい方法を用いる。

β-tagging system

2つのPMTのシグナルを コインシデンスする。
十分な光量(~10p.e.)が 得られることを確認。 ・プラスチックシンチレータを使って、 線源から放出されたe⁺をタグ。

- シグナルは、ファインメッシュ
 PMTで両側読み出し。
- この時刻をポジトロニウム生成時刻(t=0)とする。

15 mm四方、厚さ0.2 mmの プラスチックシンチレータ

奥の中心に²²Na (700 kBq)

アクリルで外に光を取り出す。

11/18/2008 9:11:24 PM

第1回 測定(1)

- ・ 2009年6月から、測定を開始 (9月末までの予定)。
- Trigger は、β-tagging system でのプラスチックシンチレータの コインシデンスとLaBr₃のORを、コインシデンスさせて作る (β がタグできて、かつLaBr₃が1個でも鳴ったらデータを取る)。
- ポジトロニウムは、混合ガス(N₂90% + イソブタン10%)によって生成。
- イソブタン (クエンチング・ガス)によって、低速陽電子からの バックグラウンドを除去。
- ガス圧 1.5 atm, 1.0 atmで測定 (1.5 atmは測定終了、現在、1.0 atmで測定中)。
- Trigger rate ~ 3.5 kHz, DAQ rate ~ 0.7 kHz

 o-Psの、m_z=±1成分から m_z=0成分への遷移(Zeeman 遷移)によって 2γ 崩壊の数が 増えるのを見る。

 固定磁場において、RFの周 波数を変えて測りたいが、アン プやCavityは、広範な周波数 に対応できない。

固定周波数で、磁場を変えて
 変化を見ても、本質的には同じ。-> 磁場でスキャン

磁場は、変更するたび、永久
 電流モードにする(安定した後の変化は、<u>±1ppm以下</u>)。

日中、RFをかけて測定し、夜
 中・休日に、RF-OFFの測定を
 行う。

時間スペクトル

- •プラスチックシンチレータ と、LaBr₃の時間差。
- •分解能 σ~1.0 ns
- •511 keV FWHM のエネ ルギーカットで、2γ イベン トを選択。
- •通常(RF OFF)は、短い 成分(磁場)と、長い成分 (pick-off)。

・共鳴ピーク上(赤)では、 遷移によって、2γイベント が増加していることが分 かる。

エネルギースペクトル(1)

エネルギースペクトル(2)

・RF OFFのスペクト ルを差し引いた後の スペクトル。

・遷移 2γ のみのスペ クトルと考えてよい。

・共鳴ピークで、2γ崩 壊が増えていることが、 はっきりと現れている。

・ピークから外れたところ(青)では、遷移が少ない。

HFS = 203.3932 ± 0.0034 GHz (17 ppm, 統計誤差のみ)

	系統誤差の要因	大きさ (ppm)	系統誤差の要因	大きさ (ppm)
	磁場の非一様性	41	RF 周波数	6
	解析法	< 40	RF Cavity の Q値	10
	(研究中 -> Backup)		▶測定点とPs生成領域間の	20
	共鳴曲線の補正	< 20	磁場の補正	
	圧力依存性 (熱化以外)	10	→磁場変動	2
	ポジトロニウムの熱化	< 20	NMR磁場測定	2
<u></u>	字· 今後の 解析で改善予定		Quadrature sum	69

1.5 atm での測定で得られたHFSの暫定値 203.393 ± 0.003 (17 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz <u>過去の実験値・理論値と無矛盾</u> 系統誤差を1桁以上改善する必要がある。

・磁場の非一様性が、最大の系統誤差。

Cavity内部での磁場の非一様性
 は、RMSで 20 ppm (HFSにして 41 ppm)。

今後の展望

- 1.0 atm での測定を、9月中旬まで継続 -> 圧力依存性を見る。
- 磁場測定
 磁場の詳細な強度分布を得る(測定は9月下旬)。
- 補償磁石の製作
 最大の系統誤差:磁場の非一様性を克服するため、補償磁石を用いる。過去の磁場測定の結果を基に、設計を開始している。実機製作を行い、試験的にHFS測定を行う(年末~年明け)。O(1) ppmの磁場一様性を得る。
- 系統誤差、解析方法の研究 -> 他の系統誤差を1 ppm 程度 に抑える。
- 物質の効果を精密に測定し、O(1) ppm の精度でHFSを測る (本測定、来年)。
- 統計精度:第1回測定で、24時間換算約20日で17 ppm -> 1年かければ3~4 ppm

まとめ

- ポジトロニウムの超微細構造の精密測定に向け、
 第1回測定を進行中。
- 今までのデータから、過去の実験値・理論値と無矛 盾な結果が、71 ppm 程度で求まっている。
- ・最も深刻な系統誤差は、磁場の非一様性。
- 磁場の一様性を、O(1) ppmで得るため、磁場を精密
 に測定し、補正磁石を開発する。
- 1年程度で、物質の効果を入れて O(1) ppm の精度 を達成する。

Backup

低速陽電子 (Slow Positron)

- ・ガス中で、陽電子は、ガス分子との衝突を繰り返し、エネルギーを失う。
- エネルギーを失ってほぼ止まった後、陽電子の多くは、遅くなったまま生き続け、Psを生成したり、対消滅したりせず、~180 ns の寿命を持つ -> 低速陽電子
 タイミングカットをかけて、アクシデンタルを引いても、低速陽電子が対消滅するときの2yが、大きなバックグラウンドとなる。
- 2008年末のテスト測定では、これが大きな問題となった (30—400 ns timing windowのなかで、アクシデンタルを引いた後のイベントの、60 %を、低速陽電子が占めていた)。
- イソブタンなどのガスは、低速陽電子の寿命を短くする、クエンチャーの能力がある。-> 今回の測定では、イソブタンを混ぜ、バックグラウンド除去に成功した。

磁場中での寿命 2成分フィット例

解析法(1)

Single $2\gamma/3\gamma$ RF-ON+RF-OFF

- 解析法として、まず、LaBr₃ single triggerで、2γ/3γの 比を、RF-ONからRF-OFFを引いて調べた (3γでノー マライズした)。
- これ以外にも、解析法 (2γ 遷移量の選び方) は、考えられる。
- 解析方法による違いは、最終結果の系統誤差となるので、詳細な研究が必要。
- RF-ON のみで 2γ/3γ を見る方法、RF-ON の 2γ レート だけを見る方法、single trigger でなく、back-to-back を用いる方法が考えられる。計6通り試した。

解析法(2) Single 2γ/3γ RF-ON

RF-OFFを引かな いため、フロアが 残っている。 フロアの形として、 ー次関数を仮定し、 (ブライト・ウィグ ナー+ー次関数) でフィット。

= 203.395 ± 0.003 (15 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(3) Single 2γ RF-ON

= 203.396 ± 0.003 (15 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(4)

Back-to-back 2γ/3γ RF-ON+RF-OFF

最初の解析法 を、Back-to-back条 件を課して、行ったも \mathcal{O}_{\circ} 2γは、2本とも511 keV FWHM, 3y は、2本ともコンプトン フリー。 比の大きさ は、Singleより5倍よ いが、統計が少ない ため、損している。

= 203.392 ± 0.024 (120 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(5) Back-to-back 2γ/3γ RF-ON

= 203.399 ± 0.022 (110 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

解析法(6) Back-to-back 2y RF-ON

= 203.391 ± 0.017 (84 ppm, stat.) ± 0.014 (69 ppm, sys.) GHz

実験値 理論値 Single 2y/3y RF-ON+RF-OFF Single $2\gamma/3\gamma$ RF-ON Single 2y RF-ON Back-to-back 2y/3y RF-ON+RF-OFF Back-to-back 2y/3y RF-ON Back-to-back 2y RF-ON 203.37 203.38 203.39 203.4 203.41 203.42 HFS (GHz)

解析法の違いによる系統誤差が、40 ppm と、大きすぎる。 -> 更なる研究が必要。

RF強度、e⁺の止まる場所

実際には、これらの重みもかける必要がある。 ほとんど、中心軸上の磁場しか効かないことが分かる。

熱化は測れるか?

ポジトロニウムの超微細構造(HFS)

Experimental

average

Ritter et al., 1984

203.389

203.391

203.393

Mills et al., 1983

203.387

203.385

Theory

(Kniehl et al., 2000)

ポジトロニウムの基底状態 スピン平行(S=1)な o-Ps とスピン反平行(S=0)な p-Ps の エネルギー準位差(Δ_{HFS}=203 GHz = 0.84 meV (ミリ波))。 H (21cm = 1.4 GHz) より遙かに大きい(質量、量子振動)。 なぜ重要か? 1. 束縛系 QED の精密検証 (レプトンのみのクリーンな系) 2. 未知の物理現象にsensitive (s-channel が有効) 実験的には、1970-80sを中心に測定され、 3.3 ppm の精度で求まっている (203.38865(67) GHz)。 近年、O(α³)のQED計算が可能になり、 測定値と計算値が一様にずれている (15ppm, 3.9σ) ことを確認。

^{393 203.395} HFS [GHz] -> 実験も計算も正しいなら、

標準理論を超えた新しい物理を示唆。

-> 新しい実験でより精密に測定して検証する。³¹

Zeeman効果を用いた間接測定の方法

Δ_{HFS}(203.4 GHz)で直接遷移 させるのは昔は難しかった。

磁場をかけると、 o-Psの(S=1, m_z=0)と p-Ps(S=0, m_z=0)が混合し エネルギー準位が分裂 (Zeeman 効果)

Δ_{mix}は、9 kG 程の磁場中で
 約 3 GHz ->マイクロ波なので
 大強度での利用が十分可能。
 -> この遷移を起こさせると2γ崩壊の
 確率が高くなることを利用して測定。

$$\Delta_{mix} = \frac{1}{2} \Delta_{HFS} \left(\sqrt{1 + x^2} - 1 \right)$$

 $x = \frac{2g'\mu_B H}{\Delta_{HFS}} \quad b \in \Delta_{HFS} \in \mathbb{R}$ ->過去の実験は -207 = -207

過去の実験と問題点

RF Cavityにガスを入れて β+線からポジトロニウムを生成 MAGNET POLE FACE マグネット コイル CROWAVE LEAD COLLIMATOR PHOTOMULTIPLIER GAS MAGNETIC SHIELDS MICROWAVE OUTPUT Nal(TI)シンチレータで Back-to-backに測定 「磁石の神様」 V. ヒューズらの 実験セットアップ(70年代)

問題点1. 磁場の非一様性

磁場の不定性がそのまま 測定結果の主な系統誤差に。 一方、ポジトロニウムの 生成領域は数cmに及ぶ。 -> 大きなサイズでppm精度での 磁場制御は非常に困難。

問題点2.物質の効果

過去の実験では、物質の効果 (Psの熱化過程)を正しく評価せず。 90年代、「オルソポジトロニウム の寿命問題」で、この効果が 深刻な系統誤差を生むことを 我々が示した。 ³³

時間分解能の角度(か)依存性

新しい2γ-taggingの方法

2γ崩壊と 3γ崩壊の比から、HFS を求める → 2γを正確に tag する必要 2つの方法

高いエネルギー分解能(4 % FWHM @ 511 keV)をもつ LaBr₃シンチレータを使うことで、Energy tagging が可能 -> 約50倍高い統計が得られる(短期間で測定可能)

時間情報と物質の効果

ライトガイドの長さによる光量の変化

角度(曲げ)依存性

Table of Scintillator Properties

Scintillator	Density	Refractive index	Photons per MeV	Emission Maximum	Decay Constant	Radiation Length
	g / cm ³			nm	ns	cm
Nal (Tl)	3.67	1.85	38000	415	230	2.59
CsI (TI)	4.51	1.79	59000	565	1000	1.86
LYSO	7.25	1.81	32000	420	40	1.15
YAP (Ce)	5.55	1.93	19700	347	28	2.7
LaBr ₃ (Ce)	5.29	1.9	63000	380	25.6	1.88

Timing Window の選び方

