MATHEMATICS OF THE UNIVERSE

PAMELA/ATIC cosmic-ray anomalies and new physics

Apr. 2009
 @実験理論共同研究会
 「LHC が切り拓く新しい物理」

Fuminobu Takahashi (IPMU, Univ. of Tokyo)

Collaborators: Chen, Hamaguchi, Komatsu, Nojiri, Shirai, Torii, Yanagida arXiv:0809.0792, 0810.4110, 0811.0477, 0811.3357, 0812.4200, 0901.1915, 0901.2168, 0902.4770

Plan of talk

@1.Introduction

2.PAMELA and ATIC/PPB-BETS anomalies
3.Dark Matter Models
Annihilation and decay of dark matter
Hidden gauge boson
4.Conclusion

Introduction

Dark Matter

How can we know the presence of "dark" matter?

It's not just a good idea. It's the law!

Dark Matter

The presence of DM has been firmly established.

 $\Omega_{DM} \sim 0.2$

CMB observation

Rotation curves

Structure formation

Big bang nucleosynthesis

Dark Matter Candidates

Must be electrically neutral, long-lived and cold. No DM candidates in SM.

SUSY

Many

LSP is long-lived if R-parity is a good symmetry. e.g.) neutralino, gravitino, right-handed sneutrino, axino, etc.. Little Higgs, UED, etc. The lightest T-parity/KK-parity particles Others Q-ball, saxion, moduli, sterile V, etc...

Dark matter may not be completely dark. © Collider

Direct detection

Indirect search: annihilation/decay of dark matter

Uncertainty in propagation/ clumpiness.

(http://pamela.roma2.infn.it/index.php)

Dark matter may not be completely dark. @ Collider

PAMELA & ATIC/PPB-BETS signature?! PAMELA found DM signature?! may have found

Uncertainty in propagation/ clumpiness.

Galaxy

(http://pamela.roma2.infn.it/index.php)

PAMELA and ATIC/PPB-BETS

a payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

Launched on the 15th of June 2006.

An altitude between 350 and 610 Km with an inclination of 70°.

Second Expected to operate at least by Dec. 2009 (3 years).

PaMeLa

Positron: 50 MeV - 270 GeV Antiproton: 80 MeV - 190 GeV

This is what PAMELA observed.

Energy (GeV)

Positron fraction

Adriani et al, arXiv:0810.4995

July2006-Feb. 2008

151,672 e-9,430 e+ in 1.5-100GeV

To appear tomorrow in Nature

PAMELA found an excess in the positron fraction!

Polar Patrol Balloon (PPB)

Advanced Thin Ionization Calorimeter (ATIC)

PPB-BETS: 2004 http://ppb.nipr.ac.jp/

ATIC-1: 2001 ATIC-2: 2003 ATIC-4: 2008

http://atic.phys.lsu.edu/aticweb/index.html

ATIC found excess in the $(e^+ + e^+)$ spectrum

Chang et al, Nature Vol.456 362 2008 [ATIC] Torii et al, arXiv:0809.0760 [PPB-BETS]

HESS

HESS

The PAMELA data suggests that there is a local primary source for positrons.

The positron spectrum needs to be a very hard one.

Then, we should expect that the electron spectrum may be also significantly modified at E > 100GeV.

Maybe, the PAMELA and ATIC/PPB-BETS excesses arise from the same origin.

Possible candidates

Dark Matter decay or annihilation

Nearby pulsars, gamma-ray burst, microquasars, or unknown astro. source.

> Profumo 0812.4457, Ioka 0812.4851 Kawanaka,Ioka,Nojiri 0903.3782

DM or pulsars?

The annihilation/decay of DM is often accompanied with anti-protons, gamma-rays, neutrinos. The observation on those particles will be complementary check.

If the positron/electron excess is dominated by a few nearby pulsars, we may be able to observe directional anisotropy of O(0.1-1)%.

Need more data!!

Dark Matter Models

Dark matter must account for

Dark matter must account for

 the observed electron + positron flux with a hard spectrum,

Dark matter must account for

 the observed electron + positron flux with a hard spectrum,

2) while avoiding anti-proton (neutrino, gamma) overproduction.

Electron + Positron flux:

Propagation through the galactic magnetic field is described by a diffusion equation

Annihilating DM scenario

$$\langle \sigma v \rangle = \mathcal{O}(10^{-23}) \,\mathrm{cm}^3/\mathrm{sec}$$

 $m \sim 600 - 800 \,\mathrm{GeV}$ (for unit boost factor)

🖈 Decaying DM scenario

Lifetime:
$$\tau \sim 10^{26} {
m sec}$$

 $m \sim 1.2 - 1.6 \,\mathrm{TeV}$

Solution Annihilating DM scenario The mass should be (600-800)GeV. The needed annihilating cross section is

$$\langle \sigma v \rangle = \mathcal{O}(10^{-23}) \,\mathrm{cm}^3/\mathrm{sec}$$

 $\gg \langle \sigma v \rangle_{\mathrm{thermal}} \simeq 3 \times 10^{-26} \,\mathrm{cm}^3/\mathrm{sec}$

cf. thermal relic abundance:

$$\Omega_{dm}h^2 \sim 0.1 \left(\frac{\langle \sigma v \rangle_{fo}}{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}\right)^{-1}$$

In the thermal case, some enhancement is necessary. Or DM may be non-thermally produced.

Annihilating DM scenario The mass should be (600-800)GeV. The needed annihilating cross section is $\langle \sigma v \rangle = \mathcal{O}(10^{-23}) \,\mathrm{cm}^3/\mathrm{sec}$ $\gg \langle \sigma v \rangle_{\text{thermal}} \simeq 3 \times 10^{-26} \text{cm}^3/\text{sec}$

cf. thermal relic abundance:

$$\Omega_{dm}h^2 \sim 0.1 \left(\frac{\langle \sigma v \rangle_{fo}}{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}\right)^{-1}$$

In the thermal case, some enhancement is necessary. Or DM may be non-thermally produced. Boost factor:

The DM distribution may be clumpy, according to the N-body simulation.

a))

Sommerfeld effect:

Arkani-Hamed et al, 0810.0713

Breit-Wigner tail Ibe, Murayama, Yanagida, 0812.0072

 $\Gamma = \langle \sigma v \rangle n_{\rm DM}^2$

 $m_{\phi} \sim \text{GeV}$

can be enhanced.

m

Decaying DM scenario

Dark matter particle with Mass: $m\sim 1.2-1.6\,{\rm TeV}$ Lifetime: $\tau\sim 10^{26}{\rm sec}$

Independent of the boost factor.

The longevity of DM is a puzzle, especially if the mass is above 1TeV. The lightest particle charged under an approximate discrete symmetry (LSP, LKP) Gravitino, sneutrino, neutralino
 Takayama-Yamaguchi 00

Ishiwata-Matsumoto-Moroi 08,09

A hidden-sector particle

Ibarra-Tran 08,

Chen, FT, Yanagida 0809.0792 Feldman et al, 0810.5762 FT, Komatsu, 0901.1915

A composite particle

Hamaguchi, Nakamura, Shirai, Yanagida 0811.0737 Hamaguchi, Shirai, Yanagida 0812.2374

Why is lifetime O(10^26) sec? Why does DM mainly decay into leptons? Constraints on Dark Matter Models

No excess in antiprotons

- Quark, W, Z, Higgs productions tend to lead to too many antiprotons.
- Should mainly annihilate/ decay into leptons.

Most of the observed antiprotons are considered to be secondaries.

Adriani et al, arXiv:0810.4994

The dark matter particle decays or annihilates mainly into leptons (e.g. due to a symmetry).

e.g.) a hidden U(1) gauge boson, leptophilic dark matter Maybe the dark matter particle has a lepton number. e.g.) right-handed sneutrino.

The lepton number as well as a discrete symmetry responsible for the longevity of dark matter are explicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

 Dark matter particle first decays into lighter particle, which is prevented kinematically from decaying into hadrons.
 Arkani-Hamed et al, 0810.0713

Pospelov et al, 0810.1502
The solar system may be very close to a DM clump.

Hooper et al, 0812.3202

dark matter particle decays or annihilates mainly no leptons (e.g. due to a symmetry).

e.g.) a hidden U(1) gauge boson, leptophilic dark matter Maybe the dark matter particle has a lepton number.

e.g.) right-handed sneutrino.

The lepton number as well as a discrete symmetry responsible for the longevity of dark matter are explicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

Dark matter particle first decays into lighter particle, which is prevented kinematically from decaying into hadrons. Arkani-Hamed et al, 0810.0713

Pospelov et al, 0810.1502

dark matter particle decays or annihilates mainly no leptons (e.g. due to a symmetry).

e.g.) a hidden U(1) gauge boson, leptophilic dark matter e the dark matter particle has a lepton number.

e.g.) right-handed sneutrino.

eptoniu The lepton number as well as a discrete symmetry responsible for the longevity of dark matter are explicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

Dark matter particle first decays into lighter particle, which is prevented kinematically from decaying into hadrons. Arkani-Hamed et al, 0810.0713

Pospelov et al, 0810.1502

A dark matter particle decays or annihilates mainly no leptons (e.g. due to a symmetry).

e.g.) a hidden U(1) gauge boson, leptophilic dark matter e the dark matter particle has a lepton number.

e.g.) right-handed sneutrino.

The lepton number as well as a discrete symmetry ponsible for the longevity of dark matter are plicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

 Dark matter particle first decays into lighter particle, which is prevented kinematically from decaying into hadrons.
 Arkani-Hamed et al, 08

Arkani-Hamed et al, 0810.0713 Pospelov et al, 0810.1502

A dark matter particle decays or annihilates mainly no leptons (e.g. due to a symmetry).

e.g.) a hidden U(1) gauge boson, leptophilic dark matter the dark matter particle has a lepton number.

e.g.) right-handed sneutrino.

The lepton number as well as a discrete symmetry ponsible for the longevity of dark matter are plicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

Matter particle first decays into lighter particle, which is prevented kinematically from decaying into hadrons. Arkani-Hamed et al, 0810.0713 Pospelov et al, 0810.1502

dark matter particle decays or annihilates mainly no leptons (e.g. due to a symmetry). e.g.) a hidden U(1) gauge boson,

leptophilic dark matter the dark matter particle has a lepton number.

e.g.) right-handed sneutrino.

The lepton number as well as a discrete symmetry ponsible for the longevity of dark matter are plicitly broken altogether.

e.g.) gravitino LSP w/ R-parity violation

Matter particle first decays into lighter particle, which is prevented kinematically from Mying into hadrons. Arkani-Hamed et al, 0810.0713 Pospelov et al, 0810.1502

The solar system may be very close to a DM clump.

Hooper et al, 0812.3202

EGRET on CGRO(Compton Gamma Ray Observatory) satellite detected the gamma rays in the 20MeV-30GeV range.

Strong, Moskalenko and Reimer (`04)

Contributions from unID point sources?

No excess in neutrinos from Galactic Center

Hisano, Kawasaki, Kohri, Nakayama,0812.0219

Tighter constraints on the annihilating DM scenario.

Synchrotron radiation from Galactic center Ishiwata, Matsumoto, Moroi, 0811.4492 Big bang nucleosynthesis Hisano, Kawasaki, Kohri, Nakayama,0810.1892 Hisano, Kawasaki, Kohri, Moroi, Nakayama, 0901.3582

Hidden U(1) Gauge Boson

Hidden-gauge-boson DM

Chen, Takahashi, Yanagida (2008) arXiv:0809.0792, 0811.0477

$$\mathcal{L}_{(4D)} = -\frac{1}{4} F_{\mu\nu}^{(H)} F^{(H)\mu\nu} - \frac{1}{4} F_{\mu\nu}^{(B)} F^{(B)\mu\nu} + \frac{\lambda}{2} F_{\mu\nu}^{(H)} F^{(B)\mu\nu} + \frac{1}{2} m^2 A_{H\mu} A_H^{\mu} + \frac{1}{2} M^2 A_{B\mu} A_B^{\mu}, \quad \text{kinetic mixing}$$
We can make A's canonical and express them in terms of the mass-eigenstates:

$$A_B \simeq A'_B - \lambda \frac{m^2}{M^2} A'_H,$$
Coupling to SM fermions:

$$\mathcal{L}_{\text{int}} = q_i A_B^{\mu} \bar{\psi}_i \gamma_{\mu} \psi_i \supset -\lambda q_i \frac{m^2}{M^2} A'_H^{\mu} \bar{\psi}_i \gamma_{\mu} \psi_i, \quad \text{B-L charge}$$

$$\tau \simeq 1 \times 10^{26} \sec \left(\sum N_i q_i^2\right)^{-1} \left(\frac{\lambda}{0.01}\right)^{-2} \left(\frac{m}{1.2 \text{ TeV}}\right)^{-5} \left(\frac{M}{10^{15} \text{ GeV}}\right)^4,$$

/

l

Lepton dominated decay modes!

Positron Fraction

Chen, Nojiri, Takahashi, Yanagida (2008)

Selectron + positron spectrum:

Chen, Nojiri, Takahashi, Yanagida (2008)

Hidden-gauge-boson DM

Hidden U(1) Gauge Boson

High predictivity on the branching ratios.
Correct lifetime is naturally derived.
Lepton dominated decay modes with suppressed antiproton flux!

The anti-proton production can be avoided if we consider the hidden U(1) gaugino!

Shirai, Takahashi, Yanagida (2009)

Conclusion

Conclusions

The origin of PAMELA and ATIC/PPB-BETS signals may be DM decay or annihilation.

Annihilation: $\langle \sigma v \rangle$

$$\langle \sigma v \rangle = \mathcal{O}(10^{-23}) \,\mathrm{cm}^3/\mathrm{sec}$$

Enhancement of 100 – 1000 is needed for the thermal relic DM.

Or DM may be produced non-thermally.

Decay:

$$\tau = \mathcal{O}(10^{26} \mathrm{sec})$$

Conclusions

Cross-check in the gamma-rays and antiprotons will be important.

One plausible candidate is a hidden U(1) gauge boson/ gaugino that mixes with U(1)B-L.

Preliminary Fermi Data

Equivalent to EGRET's 1st year!! Many point sources will be identified, all the data will be released in next August.

Gravitino DM

Gravitino DM with broken R-parity can fit PAMELA Ishiwata, Matsumoto, Moroi `08 [see also Ibarra and Tran`08]

The gravitino DM can also explain the ATIC data: Hamaguchi, FT, Yanagida, `09

Gravitational Dark Matter Decay

FT, Eiichiro Komatsu: arXiv:0901.1915

Dark matter particle with Mass: $m\sim 1.2-1.6\,{\rm TeV}$ Lifetime: $\tau\sim 10^{26}{
m sec}$

Then, the abundance is naturally explained by the coherent oscillations.

$$\Omega_{\phi}h^{2} = 0.2A \left(\frac{g_{*}}{100}\right)^{-\frac{1}{4}} \left(\frac{v}{10^{9} \,\mathrm{GeV}}\right)^{2} \left(\frac{m_{\sigma}}{1 \,\mathrm{TeV}}\right)^{\frac{1}{2}}.$$

Three lines meet at one point!!!

Dark Matter Model Selection

Chen, Hamaguchi, Nojiri, FT, Torii arXiv:0812.4200

Initial source spectrum of electrons is modeldependent:

Smearing Effect

CALET 5yr data may be able to tell the difference between double-peak and flat ones.

