Vector Boson Fusion過程を用いた ヒッグスのスピンとCPの測定

ICEPP 兼田 充

ATLAS 研究会@東大

2005年10月1日

Spin and CP of the Higgs M.Kaneda 1

Outline

- ・ Vector Boson Fusion 過程の H->WW->lvjj
- ヒッグスの崩壊におけるスピンとCPに 関係するパラメーター
- MC Event Generation
- イベントセレクション
- 結果
- まとめ

Introduction

- ・ LHC-ATLAS実験において、ヒッグス粒子が発見された後、 その粒子の性質について調べることが次の課題である。
- M_H>2M_Wの時、ヒッグスは主に、W+W-またはZZペアに 崩壊する。
 この崩壊モードの場合、発見は容易である。
 (L=30fb⁻¹ 20σ以上のsignificance)
- ・ ヒッグスのスピンやCPについてのstudyとしては、 H->ZZ->4lという崩壊過程におけるものがある。
 C. P. Buszello *et al.*, hep-ph/012396

他にATLASではATL-PHYS-2001-004に記述がある

 今回私達はH->WW->lvjjという崩壊過程でのヒッグス 粒子のスピン、CPの測定について研究した。

VBF H->WW->lvjj

- ヒッグスの質量が140GeV以上で WWへの崩壊が非常に大きい。
- Vector Boson Fusionについての 今までの私達の研究を用いること が出来る。
- この崩壊過程ではneutrinoが一つしか存在しないので値を解くことが出来る。従って事象を完全に再構成できるので、H->ZZ->41、H->γγ、H->ττ、と並ぶ重要なチャンネルである。

2005年10月1日

Spin and CP of the Higgs M.Kaneda

4

Parameters Sensitive to Spin- and CP-eigenvalues of the Higgs Decay Direction of motion of the child in the V rest frame V(W)

V(W)

θ::W粒子の静止系におけるフェルミオンの運動量の方向と、 ヒッグス粒子の静止系におけるW粒子の運動量の方向間の角度。

The Higgs decay point

これらの角度はヒッグスのスピンとCPに対してsensitiveである

The Decay Plane Correlation Function

Ref. Charles A. Nelson, Phys. Rev. D 37,1220(1988)

♦に関しては次のような関数でフィット出来る

 $\mathbf{F}(\phi) = \mathbf{C}(1 + \alpha \cos \phi + \beta \cos 2\phi)$

しかし、jetの電荷を知ることは出来ないので次のような関数になる

 $\mathbf{F}^*(\phi) = (\mathbf{F}(\phi) + \mathbf{F}(\pi - \phi))/2 = \mathbf{C}(1 + \beta \cos 2\phi)$

従って、このモードではβのみ測定することが出来る。

The Polar Angle Distribution Ref. V.Barger *et al*, Phys. Rev. D 49,79(1994)

- ・ θ に関しては次のような関数でフィットすることができる: $G(\theta) = T \cdot (1 + \cos^2(\theta)) + L \cdot \sin^2(\theta)$
 - L:W粒子の振幅のたて成分 T:W粒子の振幅の横成分
- 新たにRを:
 R:=(L-T)/(L+T)
 と定義。
 これはたて成分と横成分の
 割合を表す量である。

Spin and CP of the Higgs M.Kaneda M_µ(GeV)

MC Generations

- Signal:VBF H -> WW -> $lvjj(l = e,\mu)$
 - $\sigma^*Br(H->WW) = 351 fb (M_H = 130 GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 539fb (M_H = 140GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 693fb (M_H = 150GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 842fb (M_H = 160GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 836fb (M_H = 170GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 527fb (M_H = 200GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 370 fb (M_H = 250 GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 277fb (M_H = 300GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 151 fb (M_H = 400 GeV) (Pythia)$
 - $\sigma^*Br(H->WW) = 89.5fb (M_H = 500GeV) (Pythia)$
- Background:
 - ttbar $\sigma = 488pb$ (Pythia)
 - W+4jets
 - σ*Br(W->leptonic decay)= 134pb
 - (Alpgen + Pythia)
- この研究はFast simulationを用いて行った。

- $\eta_{f1} < \eta_{c1}, \eta_{c2}, < \eta_{f2}$
- ΔR between forward jet and central jet >2.0(3.0)
- top veto
 - Number of b-jets = 0(B.G.でtopを含むものを落とすためにtopから崩壊するbottom粒子が無いことを要求)
- Mini jet veto
 - 二つのforward jetの間の領域に20GeV以上のjetがforward, central jet以外に存在しないことを要求

Selection (W->lv Reconstruction)

- neutrinoの横方向の運動量はmissing Etとして計れるが、z 方向(ビーム軸方向)の運動量E_{vz}直接は計れないので、観 測量から決めてやらなければならない。
- Conventionalな方法として E_{vz} をmissing Etとleptonの運動量 を用いて、ニュートリノとレプトンからWをリコンストラクション した際に $M_{w->lv}$ = 80GeVとなるように決めるものがある。 この方法は2次方程式を導くことになるので二つの解 $E_{vz1}, E_{vz2}(|E_{vz1}|>|E_{vz2}|)が存在する。$ $Conventionalな方法では<math>E_{vz}$,を選んでいる。

この方法によって得られたE_{vz}は実際のE_{vz}と大きく違っていて角度 分布に影響を及ぼしてしまっている。

Selection

(W->Iv Reconstruction)

我々が開発した新しい方法

- ヒッグス発見後の測定モードとしてはヒッグスの質量の情報をインプットとして使える。つまりM_Hをfixしてmissing E_T、leptonの 運動量、二つのcentralジェットの情報からE_{vz}を得る。 Signal(M_H=170GeV)
- Conventional method同様
 E_{vz1},E_{vz2}(|Ev_{vz1}|>|E_{vz2}|)の
 二つの解がありE_{vz2}を選んだ。
- 二つの方法を比べた結果、
 新しい方法の方がより正しいE_{vz}
 を得られるという結果が出た。

・ また、ヒッグスの質量に5GeV程度の不定性があった場合でも、
 角度分布に対する大きな影響は出ないことを確認した。

Selection (W->lv Reconstruction)

- この方法によりE_{vz}が得られなかった場合(方程式が解けない場合)そのイベントは除く。
- ・得られた E_{vz} を用いて Wをleptonとneutrinoから 再構成し、その 質量に対して $60GeV < M_{lv} < 100GeV$ のCutをかける。 $(M_{H}>=160GeVのみ)$

Event Statistics

Expected cross sections after selections.

M _H (GeV)	130	140	150	160	170
Signal(fb)	0.20	0.30	0.64	0.92	1.4
Ttbar(fb)	0.010	0.010	0.010	<0.01	0.029
W+4jets(fb)	0.15	0.17	0.31	0.23	0.57
M _H (GeV)	200	250	300	400	500
Signal(fb)	0.88	1.0	0.31	0.061	0.024
Ttbar(fb)	0.12	0.37	0.039	0.020	<0.01
W+4jets(fb)	1.2	3.6	0.95	1.2	0.99

2005年10月1日

Event Statistics

Expected cross sections after selections.

Significance(S/($B^{1/2}$)) at 100fb⁻¹.

Results of β [100fb⁻¹](signal only and error is statistical only)

M _H (GeV)	130	140	150	160	170
result	-0.11+/-0.31	-0.034+/-0.27	0.15+/-0.18	0.21+/-0.14	0.089+/-0.12
Theory(SM)	0.24	0.22	0.20	0.17	0.14
M _H (GeV)	200	250	300	400	500
result	0.061+/-0.15	0.0023+/-0.0.14	-0.13+/-0.25	0.015+/-0.58	-0.071+/-0.92
Thory(SM)	0.078	0.030	0.013	0.0038	0.0015

Spin 1,CP +/-1	0
Spin 0,CP -1	-0.25

2005年10月1日

Results of R [100fb⁻¹](signal only and error is statistical only)

M _H (GeV)	130	140	150	160	170
result	0.91+/-0.31	0.97+/-0.24	0.84+/-0.18	0.72+/-0.20	0.63+/-0.17
Theory(SM)	0.60	0.58	0.55	0.41	-0.034
M _H (GeV)	200	250	300	400	500
result	1.09+/-0.099	1.22+/-0.044	1.84+/-0.21	1.21+/-0.31	1.87+/-073
	0.27	0.76	0.80	0 07	0 00

Spin 1,CP +/-1	0.3
Spin 0,CP -1	-1

2005年10月1日

- Higgs Mass Constraint Method を考案し、H->WW->lvjjにおいて Conventional Methodより正確なE_{vz}を得ることが出来た。
- LHC-ATLAS実験において、ヒッグスがスピン0の場合、H->WW >lvjj 過程を用いて、CPがeven かoddか識別可能。
- 130,140GeVなど、M_Hが小さいところでは難しい

今後の課題

- Selectionについてはまだ改良の余地がある。
- tbjのような他のB.G.についても調べてみる必要がある。
- 理論値とのずれについて。
- スピン1やCP oddのヒッグスについての研究。
- Forward jets の角度相関もヒッグスのスピン、CPに対してsensitiveな 値で、これについても今後研究する。

Back Up

2005年10月1日

Generator Fit

2005年10月1日

cosθ

3: cosTheta3

🗵 1: cosTheta1

2005年10月1日

φ

🛛 6: phiOfj1lep1

Result Fit

cosθ

I: cosTheta1

φ

図 6: phiOfj1lep1

🕲 8: phiOfj1lep3

W->Iv Reconstruction

34

学会の時の結果

2005年10月1日

Fitting function: $F^*(\phi) = C(1 + \beta \cos 2\phi)$

Results of β [30fb⁻¹](signal only and error is statistical only)

	$\mathbf{M}_{\mathbf{H}}$	Fitting value at 30fb ⁻¹	SM	Spin 1,CP +/-1	Spin 0,CP -1	
	160GeV	0.16+/-0.23	0.17	0	-0.25	
	170GeV	0.06+/-0.19	0.14	0	-0.25	
2005年10月1日 Spin and CP of the Higgs				36		
M.Kaneda						

Results (cosθ)

Fitting function: $G(\theta) = T \cdot (1 + \cos^2(\theta)) + L \cdot \sin^2(\theta)$ R := (L - T) / (L + T)Result of R [30fb⁻¹](signal only and error is statistical only) $R = 0.70 + -0.32(M_H = 160 \text{GeV})$ $R = 0.54 + -0.30(M_H = 170 \text{GeV})$

2005年10月1日