Inclusive transverse mass analysis for squark and gluino mass determination

清水康弘(KEK)

arxiv:0802.2412, 野尻美保子(KEK,IPMU)、清水康 弘、岡田勝吾(神戸)、川越清以(神戸)

Introduction

★LHCではカラーを持ったsquark, gluinoが主に生成 squark/gluinoの質量が重要 ★最初の数年はルミノシティーがそれほどあがらない (数/fb程度?) ★ squark/gluinoがレプトンへカスケード崩壊する モードは奇麗だが分岐比が一般に小さい(~ 5%)。もしかしたらほとんどゼロかもしれない。 ★LHC実験の初期のSUSY探索にはinclusiveなjetの 解析が大切。

 \rightarrow inclusive MT2 analysis

MT2 (Stransverse mass)

LHCでのSUSYのイベント

- $pp \rightarrow \zeta_1 \zeta_2 \rightarrow (\alpha p) (\beta q)$ 2つのSUSY粒子が対で生成される。
 終状態に2つの見えない粒子(LSP)
 生成の重心系のエネルギーはわからない。
 - 生成の重心系のビーム方向のエネル
 ギーもわからない。

Barr, Lester, Stephens, '03

見えない粒子に崩壊するときに親粒子の質量は測れるか?

Transverse mass (mT)

 $\rightarrow W \longrightarrow l \nu$

Wの質量測定(vがmissing)

$$\begin{split} m_T^2 &\equiv m_l^2 + m_{\nu}^2 + 2(E_T^l E_T^{\nu} - \vec{p}_T^{\ l} \cdot \vec{p}_T^{\ \nu}) \\ &\leq m_l^2 + m_{\nu}^2 + 2(E_T^l E_T^{\nu} \cosh \Delta \eta - \vec{p}_T^{\ l} \cdot \vec{p}_T^{\ \nu}) = m_W^2 \\ E_T &= \sqrt{m^2 + p_T^2} \qquad \eta = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} \\ m_T (は親の質量(m_w) より小さい。 \\ m_T 分布のエンドポイントからm_wが分かる。 Aaltonen et al, PRL 91:15[80] \\ \end{split}$$

Stransverse mass (mT2)

SUSY粒子は対生成されてジェットなどを出しながら2つのLSPを 含む終状態にカスケード崩壊する。

 $pp \longrightarrow \tilde{q}\tilde{g} \longrightarrow (\text{visible}, LSP)_1 \ (\text{visible}, LSP)_2 \qquad \text{Lester,Summer(99)}$ Barr,Lester(03)

 $m_{T2}^{2}(m_{\chi}) \equiv \min_{\mathbf{p}_{T1}^{\text{miss}} + \mathbf{p}_{T2}^{\text{miss}} = \mathbf{p}_{T}^{\text{miss}}} \left[\max\left\{ m_{T}^{2}(\mathbf{p}_{T1}^{\text{vis}}, \mathbf{p}_{T1}^{\text{miss}}), m_{T}^{2}(\mathbf{p}_{T2}^{\text{vis}}, \mathbf{p}_{T2}^{\text{miss}}) \right\} \right],$

total missing PTは測定可能だが個々のmissing PTは測定できないので、それを動かして最小値をとる。

LSPの質量は知らないので、 m_{T2} はテストLSP質量($m\chi$)の関数。

 $m_{T2}^2(m_{\chi} = m_{\chi_1^0}) \le max(m_{\tilde{g}}, m_{\tilde{q}})$

mT2のエンドポイントから親粒子の質量の情報が得られる

どのようなイベントがm^{T2}のエンドポイントを与えるのか?

 $m_{T2}^{\max}(m_{\chi}) = \begin{cases} \mathcal{F}_{<}^{\max}(m_{\chi}) & \text{for } m_{\chi} < m_{\chi_{1}^{0}} \\ \mathcal{F}_{>}^{\max}(m_{\chi}) & \text{for } m_{\chi} > m_{\chi_{1}^{0}}, \end{cases}$ $\mathcal{F}_{<}^{\max}(m_{\chi}) = \mathcal{F}(m_{1}^{\text{vis}} = m_{\min}^{\text{vis}}, m_{2}^{\text{vis}} = m_{\min}^{\text{vis}}, \theta = 0, m_{\chi}),$ $\mathcal{F}_{>}^{\max}(m_{\chi}) = \mathcal{F}(m_{1}^{\text{vis}} = m_{\max}^{\text{vis}}, m_{2}^{\text{vis}} = m_{\max}^{\text{vis}}, \theta = 0, m_{\chi})$

*m*_i^{vis} はvisible object全体の普遍質量

LSPの質量は前もって分からない時、m^{T2}で親粒子の質量が きめられるだろうか?

mT2エンドポイントを与えるイベン トが入れ替わり、本当のLSP質量の ところでkinkが現れる。 W.Cho et al, arxiv:0709.0288,0711.4526 B.Gripaios, arxiv:0709.2740 A.Barr et al, arxiv:0711.4008

kinkの場所から親粒子とLSPの質量が分かる

Inclusive m_{T2} analysis

モンテカルロ

* SUSYスペクトラム ISAJETv7.75
 * イベント生成 HERWIG
 50000 SUSY events
 * 検出器シミュレーション AcerDet
 * 標準模型のBGを落とす標準的なカット
 Missing ET> max(0.2*Meff, 100 GeV)
 Meff>1200GeV

1.2.				
		A: MMAM	B: mSUGRA	
		$n_i = 0, R = 20,$	$m_0 = 1475, m_{1/2} = 561.2,$	
		$M_3(\text{GUT}) = 650$	$A = 0, \tan \beta = 10$	
	\tilde{g}	1491	1359	
	\tilde{u}_L	1473	1852	
	\tilde{u}_R	1431	1831	
	\tilde{d}_R	1415	1830	
	$ ilde{\chi}_1^0$	487	237	

超対称粒子のイベント(50000)だけを考える。

Meff分布

Meff分布は親粒子の質量が違っても同じように見えことがある。

1レプトンモードのMeff分布だけでは親粒子の質量は分からない。 mτ2分布を使えば親粒子の質量の区別がつく。

Hemisphere method

m¹²を計算するためには、対生成されたgluino/squarkから くるjetらを2つのグループに分割する必要がある。

(1). P_T> 50(ジェット), 10(レプトン/光子) GeVの粒子の運動量を足し合わせたP_i(i=1,2) を軸にするhemisphereを定義する。 (2).P_T を持った粒子kは次を満たす。 $d(p_k, P_i) < d(p_k, P_j)$

 $d(p_k, P_i) = (E_i - |P_i| \cos \theta_{ik}) \frac{E_i}{(E_i + E_k)^2}$

 $P_2^{\rm vis}$

p

Pvis

 p_k

 \mathcal{D}

親粒子のPTが大きいときには2つのhemisphere にうまく分かれる可能性が高い。(崩壊した粒 子がブーストされている)

mT2分布 (MMAMポイント)

テストLSPの質量を30GeVにとった。

パートンの運動量から 作った分布

検出された分布は大き い方まで伸びている

14

テストLSP質量が小さいときの正しいエンドポイントはテスト

質量を上げるとエンドポイントより小さくなる。

テストLSP質量は900GeV

mT2エンドポイント

テストLSP質量を変えてmT2のエンドポイントをプロット

MMAMの方は正しいLSP質量の辺りにKinkらしきものが見える。

mq>>mgの場合

highest PT jet

p

 $pp \rightarrow \tilde{q}\tilde{g} \rightarrow (q\tilde{g})\tilde{g}$ mT2分布のエンドポイントmax(mq,mg)は重いsquarkで決まる。 squark崩壊のgluinoのPTも大きいので、 highest Pt jetを除いたmT2分布(mT2sub)を考 えるとend pointはgluinoで決まるか?

サンプルSUSYポイント

 $m_{\tilde{g}} = 562$ $m_{\tilde{u}_L} = 1068$ $m_{\chi_1^0} = 86$

 \mathcal{D}

全部入れたm^{T2}のエンドポイ ントは重いsquarkの質量

highest PT jetを除いたm^{T2} のエンドポイントは軽い gluinoの質量

まとめ

- ▲LHC実験の初期のデータではjetを使ったinclusive な解析が非常に大切。
- hemisphere methodによるmT2分布を用いて対生 成されたsquark/gluinoの質量の情報が得られる。
 LSPの質量を変えたときのmT2分布のエンドポイン トのkinkの値からLSPとsquark/gluinoの質量が決 められる。
- squarkとgluinoの質量差が大きいときには最も高いjetを除いたmT2分布も考えることによって
 squarkとgluinoの質量が分かる

Backup

サンプル SUSY スペクトラム

Mirage	$\begin{split} R &= 20, m_3(M_{\rm GUT}) = 650, \tan\beta = 10 \\ (\alpha &= 0.61, M_0 = 802) \\ \text{mass} \text{Br} \end{split}$) mSUGRA $m_0 = 1475, m_{1/2} = 561, A_0 = 0, \tan \beta = 1$		
$ ilde{g}$	1491 $t \tilde{t}_1(67), b \tilde{b}_1(16)$	1358 $t b \chi_2^{\pm}(30), t t \chi_1^0(12)$		
\widetilde{q}_L	1473 $\tilde{q}'_L \chi_1^{\pm}(66), \ \tilde{q}_L \chi_2^0(33)$	1852 $q' \tilde{g}(53), q_L \chi_1^{\pm}(30)$		
\widetilde{q}_R	1415 $\tilde{q}_R \chi_1^0(100)$	1830 $q \tilde{g}(96), q \chi_1^0(4)$		
${ ilde e}_L$	916 $\nu \chi_1^{\pm}(51), \ e \chi_2^0(27)$	1518 $\nu \chi_1^{\pm}(56), \ e \chi_2^0(30)$		
${ ilde e}_R$	845 $e \chi_0^{\pm}(100)$	1488 $e \chi_0^{\pm}(100)$		
${ ilde t}_1$	1014 $t \chi_0^{\pm}(63), \ b \chi_1^{\pm}(27)$	1237 $b \chi_2^{\pm}(39), t \chi_3^0(22)$		
χ^0_2	695 $h \chi_0^{\pm}(97), \ Z \chi_1^{\pm}(2)$	450 $h \chi_0^{\pm}(93), \ Z \chi_1^{\pm}(7)$		
χ_1^{\pm}	696 $W \chi_0^{\pm}(100)$	450 $W \chi_0^{\pm}(100)$		
χ^0_1	487	237		
縮退したスペクトラム 21				

$$R(m_{\chi}) \equiv \frac{m_{T2}(m_{\chi}) - m_{T2}^{(p)}(m_{\chi})}{m_{T2}^{(p)}(m_{\chi})}$$

MMAM

