Higgs が見えなくなる理論的可能性

戸部和弘（東北大学）

LHCが切り拓く新しい素粒子物理学＠University of Tokyo

Higgs が見えにくくなる理論的可能性

戸部和弘（東北大学）

LHCが切り拓く新しい素粒子物理学＠University of Tokyo

Introduction

At LHC, we have a good chance to discover Higgs boson!

SM Higgs boson search at LHC

SM Higgs production at LHC....

SM Higgs decay

SM Higgs decay

For $m_{H}<160 \mathrm{GeV}$, Higgs decay width is very small.

$$
\left(\Gamma_{Z}=2.4952 \mathrm{GeV}, \quad \Gamma_{W}=2.141 \mathrm{GeV}\right)
$$

\longrightarrow new physics can easily change the decay branching ratios

LHC experiments have a great potential to
discover a SM Higgs boson in various channels．

2006，k factors

SM Higgsの発見は確実

Non Standard Model Higgs を考える理由
\star SM Higgs boson has a problem (Naturalness problem) SM Higgs boson mass term receives large radiative corrections.

Why is electroweak scale so small?
There is no symmetry (mechanism) which guarantees the small Higgs mass in the SM.
\Rightarrow New Physics contribution to Higgs mass term may cancel the large corrections.

*supersymmetry (SUSY) \star Little Higgs etc....

Higgs boson has new interactions with new particles.

When we introduce such a new physics....

- Higgs sector may be modified. Higgs can mix with other state. e.g. MSSM is a two Higgs doublet model Interactions with SM particles can be modified
- Higgs has new interactions with new particles

Higgs may decay into new particles

$$
\Gamma(h \rightarrow b \bar{b}) \ll \Gamma(h \rightarrow X X)
$$

The decay branching ratios can be changed gluon fusion (decay to photons) is modified

\Rightarrow Higgs phenomenology can be largely affected by the new physics

\star current SM Higgs mass limits

\star Higgs-like events at around 98 GeV at LEP

SM Higgs can not explain this excess. This may be explained if $\sigma(Z h) \times \mathrm{BR}(h \rightarrow b \bar{b})$ is about 10% of the SM ${ }_{2 \sigma}$ prediction.

For example, see
G. Kane et al, hep-ph/040700I
M. Drees hep-ph/0502075
S.-G. Kim et al, hep-ph/0609076

This result may be indicating the nonstandard model Higgs boson ?!.....

Higgs が見えなくなる可能性は あるのか？

－Higgs が他のスカラーとミックスする dimension 2 operator $H^{\dagger} H$ is a gauge singlet

$$
\begin{aligned}
& \mathcal{L}=-\mathcal{O} H^{\dagger} H \\
& \mathcal{O}=N^{\dagger} N \quad: \text { singlet in NMSSM }
\end{aligned}
$$

$$
\mathcal{O}=R\left(g_{\text {ind }}\right): \text { Ricci scalar of 4d metric in RS model }
$$ ＂Higgs－radion mixing＂

Higgs interactions with SM particles can be suppressed
－Higgs がSM particle以外の粒子にdecayする

$$
\Gamma(h \rightarrow b \bar{b}) \ll \Gamma(h \rightarrow X X)
$$

Higgs decay branching ratios to SM particles can be reduced
－gluon fusionやtwo photon decayがsuppress される

new physics（SUSY／Little Higgs）

Remember．．．．．
new particles

- Higgs が他のスカラーとミックスする
- Higgs がSM particle以外の粒子にdecayする
－gluon fusionやtwo photon decayがsuppress される
SMで期待されるシグナルイベント数（ $\sigma \times \mathrm{BR}$ ）

$$
\begin{gathered}
\text { が大幅に小さくなるとHiggsが見えなく } \\
\text { (少なくとも見えづらく) なる可能性 }
\end{gathered}
$$

例えば，シグナルの $\sigma \times \mathrm{BR}$ が $1 / 3$ になったとすれば，発見に必要なルミノシティーは単純には $3^{2}=9$ 倍必要になる $\left(30 \mathrm{fb}^{-1} \rightarrow 30 \times 9=270 \mathrm{fb}^{-1}\right)$

$$
\text { Significance }=\frac{S}{\sqrt{B}}=\frac{\sigma_{\text {signal }}}{\sqrt{\sigma_{b k g d}}} \sqrt{\mathcal{L}} \quad \begin{aligned}
& \text { S: number of signal event } \\
& \text { B: number of background } \\
& \text { L: integrated luminosity }
\end{aligned}
$$

Contents

Introduction

Higgsが見えにくくなる可能性

I．Suppression of gluon fusion in Little Higgs models （and SUSY models） by Chen，Tobe and Yuan，and more．．．．．

2．Nonstandard Higgs boson decays in NMSSM by Dermisek，Gunion，and more．．．

3．Radion－Higgs mixing in Randall－Sundrum model by Guidice，Rattazzi，Wells， Hewett，Rizzo，
Dominici，Grzadkowski，Gunion，Toharia，and more．．．． Light Higgs scenario in MSSM
by Belyaev et al，and more
Summary

Higgsが見えにくくなる可能性

I．Suppression of gluon fusion in Little Higgs models （and SUSY models）by Chen，Tobe and Yuan

Little Higgs mechanism（collective symmetry breaking）

－Higgs boson is a pseudo Nambu－Goldstone boson which is light because of approximate global symmetries．Georgi and Kaplan
－Global symmetries are broken explicitly by two sets of interactions．

Arkani－Hamed，Cohen，Georgi

$$
\mathcal{L}=\mathcal{L}_{0}+\lambda_{1} \mathcal{L}_{1}+\lambda_{2} \mathcal{L}_{2}
$$

$$
\delta m_{H}^{2} \sim\left(\frac{\lambda_{1}^{2}}{16 \pi^{2}}\right)\left(\frac{\lambda_{2}^{2}}{16 \pi^{2}}\right) \Lambda^{2}
$$

$$
\sim O(100) \mathrm{GeV} \text { for } \Lambda \sim 10 \mathrm{TeV}
$$

Top sector

gluon fusion process is modified

Correction to Higgs production cross section via gluon fusion process

The production cross section can be significantly suppressed

For example: SUSY (benchmarks) vs. little Higgs model

R: nomalized by the SM prediction

Higgs discovery may need more luminosity, but....

When the new physics contribution is large, the new particle (T in Little Higgs case) should be within the reach at LHC.

Heavy T search at LHC
Matsumoto-san's talk(?)

2. Nonstandard Higgs boson decays in NMSSM

Little hierarchy problem
by Dermisek, Gunion
in minimal supersymmetric model (MSSM)
LEP limit on SM Higgs mass $\quad m_{H}>114 \mathrm{GeV}$
MSSM Higgs mass prediction

$$
m_{H}^{2} \simeq M_{Z}^{2} \cos ^{2} \beta+\frac{3 G_{F} m_{t}^{4}}{\sqrt{2} \pi^{2}}\left\{\log \frac{m_{\tilde{t}}^{2}}{m_{t}^{2}}+\frac{A_{t}^{2}}{m_{\tilde{t}}^{2}}\left(1-\frac{A_{t}^{2}}{12 m_{\tilde{t}}^{2}}\right)\right\}
$$

To satisfy $m_{H}>114 \mathrm{GeV}$

$$
\text { typically } \quad m_{\tilde{t}}>1 \mathrm{TeV} \text { for } A_{t} / m_{\tilde{t}} \ll 1
$$

On the other hand, EW breaking condition requires

$$
\frac{M_{Z}^{2}}{2} \simeq-\mu^{2}-m_{H_{u}}^{2} \sim m_{\tilde{t}}^{2}+\cdots
$$

assuming some universality at GUT scale
need some tuning for the EW scale

One of the solutions may be
If the LEP Higgs limit is $m_{H} \sim 100 \mathrm{GeV}$

$$
\begin{gathered}
m_{\tilde{t}}>300 \mathrm{GeV}(110 \mathrm{GeV}) \text { for } \tan \beta=5, A_{t} / m_{\tilde{t}}=0(\sqrt{3}) \\
\text { no serious fine-tuning }
\end{gathered}
$$

- $m_{H} \sim 100 \mathrm{GeV}$ is totally consistent with EW precision measurements
- it is possible to explain "LEP Higgs excess" at 98 GeV

$$
\begin{aligned}
& e^{-} Z \\
& e^{+}
\end{aligned} \quad Z
$$

all Higgs interactions to the SM particles are SM-like, but $\mathrm{BR}(h \rightarrow b \bar{b}) \sim 0.1$

This is possible if the Higgs has other decay mode.
$h \rightarrow a a$ in Next to Minimal Supersymmetric Model (NMSSM, that is, MSSM + singlet)

$$
W=\lambda S H_{u} H_{d}+\frac{\kappa}{3} S^{3}
$$

(h : SM like Higgs, a : CP - odd Higgs coming mostly from the singlet)
Since hbb coupling is so small, $h \rightarrow a a$ can be easily a dominant decay mode.

If dominant decay mode of a is $a \rightarrow b \bar{b}$,
LEP limit $\quad m_{H}>110 \mathrm{GeV}$
When the mass of a is below $b \bar{b}$ threshold, the dominant decay mode will be $\tau^{+} \tau^{-}$or 2 jets

LEP limit $\quad m_{H}>86 \mathrm{GeV}$

$m_{h_{1}} / m_{a_{1}}$ (GeV)	Branching Ratios $h_{1} \rightarrow b \bar{b}$$h_{1} \rightarrow a_{1} a_{1}$				$a_{1} \rightarrow \tau \bar{\tau}$	$n_{\text {obs }} / n_{\exp }$ units of 1σ
$s 95$	$N_{S D}^{L H C}$					
$98.0 / 2.6$	0.062	0.926	0.000	$2.25 / 1.72$	2.79	1.2
$100.0 / 9.3$	0.075	0.910	0.852	$1.98 / 1.88$	2.40	1.5
$100.2 / 3.1$	0.141	0.832	0.000	$2.26 / 2.78$	1.31	2.5
$102.0 / 7.3$	0.095	0.887	0.923	$1.44 / 2.08$	1.58	1.6
$102.2 / 3.6$	0.177	0.789	0.814	$1.80 / 3.12$	1.03	3.3
$102.4 / 9.0$	0.173	0.793	0.875	$1.79 / 3.03$	1.07	3.6
$102.5 / 5.4$	0.128	0.848	0.938	$1.64 / 2.46$	1.24	2.4
$105.0 / 5.3$	0.062	0.926	0.938	$1.11 / 1.52$	2.74	1.2

Dermisek，Gunion PRD73，II I70I（2006）
TABLE I：Some properties of the h_{1} and a_{1} for the eight allowed points with $F<10$ and $m_{a_{1}}<2 m_{b}$ from our $\tan \beta=10, M_{1,2,3}\left(m_{Z}\right)=100,200,300 \mathrm{GeV}$ NMSSM scan． The $n_{\text {obs }}, n_{\text {exp }}$ and $s 95$ values are obtained after full process－ ing of all $Z h$ final states using the preliminary LHWG analysis code（thanks to P．Bechtle）．See text for details．$N_{S D}^{L H C}$ is the statistical significance of the best＂standard＂LHC Higgs detection channel for integrated luminosity of $L=300 \mathrm{fb}^{-1}$ ．

SM particlesへのBRが抑制されるので，＂Standard＂LHC Higgs detection channelのStatistical significanceが大きく減ってしまつ。

Search for $h \rightarrow a a$ at LHC

$$
h \rightarrow a a \rightarrow b \bar{b} b \bar{b} \quad \text { case }
$$

Cheung, Song, Yan (2007)
Carena, Han, Huang, Wagner (2007)
$W h \rightarrow 4 j l \nu$ requiring three or four b-tagged jets
For a 120 GeV Higgs,
5σ discovery at the LHC requires about $30 \mathrm{fb}^{-1}$
(b-tagging efficiencies of 50% at $p_{T} \sim 15 \mathrm{GeV}$)
If this efficiency only hold for $p_{T}>30 \mathrm{GeV}$
need $80 \mathrm{fb}^{-1}$ for discovery
$h \rightarrow a a \rightarrow \tau^{+} \tau^{-} \tau^{+} \tau^{-}$case
$W W \rightarrow h \rightarrow 4 \tau$
"Studies of this mode have begun"
Chang, Dermisek, Gunion, Weiner (2008)
3. Radion-Higgs mixing in Randall-Sundrum model

In the RS model, the background metric is defined by

$$
d s^{2}=e^{-2 k r_{c}|y|} \eta_{\mu \nu} d x^{\mu} d x^{\nu}-r_{c}^{2} d y^{2}
$$

This metric suggests two types of massless excitations described by $\eta_{\mu \nu} \rightarrow g_{\mu \nu}(x)$ graviton $r_{c} \rightarrow T(x) \quad$ radion

$$
d s^{2}=e^{-2 k|y| T(x)} g_{\mu \nu}(x) d x^{\mu} d x^{\nu}-T^{2}(x) d y^{2}
$$

It is convenient to express the radion field in terms of

$$
\begin{gathered}
\text { a canonically normalized field } \varphi \\
\varphi \equiv \Lambda_{\varphi} e^{-k \pi\left(T-r_{c}\right)}, \Lambda_{\varphi} \equiv\langle\varphi\rangle=\sqrt{\frac{24 M^{3}}{k}} e^{-k \pi r_{c}}
\end{gathered}
$$

Goldberger and Wise

mechanism to stabilize T such that $k \pi r_{c} \sim 35$
which explains the hierarchy between weak and Planck scales

One consequence of the GW mechanism is that the radion should be somewhat lighter than the Kaluza-Klein modes of any bulk field.

The radion can mix with Higgs via

$$
S=-\xi \int d^{4} x \sqrt{-g_{\mathrm{ind}}} R\left(g_{\mathrm{ind}}\right) H^{\dagger} H
$$

R: Ricci scalar of the induced 4-d metric on the SM brane

This radion-Higgs mixing can change the Higgs phenomenology at the LHC.

$p p \rightarrow h \rightarrow \gamma \gamma$ via gluon fusion

gluon fusion can be small due to the top-loop and trace anomaly contributions. Higgs discovery in this channel will be difficult.

Higgs discovery vs. Radion discovery

h:"standard" Higgs search channels

Figure 15: The light grey (cyan) regions show the part of the $\left(\mathrm{M}_{\phi}, \xi\right)$ parameter space where the significance of the Higgs boson discovery with $\mathrm{h} \rightarrow \gamma \gamma$, $\mathrm{t} \overline{\mathrm{t}} \mathrm{h}(\mathrm{h} \rightarrow \mathrm{b} \overline{\mathrm{b}}), \mathrm{h} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \ell, \mathrm{~h} \rightarrow \mathrm{WW}^{*} \rightarrow 2 \ell$, qqh ($\mathrm{h} \rightarrow \tau \tau$) and $\mathrm{Wh}(\mathrm{h} \rightarrow \gamma \gamma$) channels drops below 5σ. The regions inside thick (blue) curves are the ones where the significance of the $\phi \rightarrow \mathrm{ZZ}^{(*)} \rightarrow 4 \ell$ signal exceeds 5σ. The outermost contours define the theoretically allowed region. Results are presentd for $\mathrm{m}_{\mathrm{h}}=125 \mathrm{GeV} / c^{2}, \Lambda_{\phi}=1 \mathrm{TeV}$ (a) and 2 TeV (b) and for $30 \mathrm{fb}^{-1}$.

$$
\varphi \rightarrow h h \rightarrow \gamma \gamma+b \bar{b}
$$

CMS NOTE-2005/007

Figure 14: The 5σ discovery contours for $\phi \rightarrow \mathrm{hh} \rightarrow \gamma \gamma+\mathrm{b} \overline{\mathrm{b}}$ channel $\left(\mathrm{m}_{\phi}=300 \mathrm{GeV} / c^{2}, \mathrm{~m}_{\mathrm{h}}=125\right.$ $\mathrm{GeV} / \mathrm{c}^{2}$) with $30 \mathrm{fb}^{-1}$. In (a) the solid contour shows the discovery region for the renormalization and factorization scales $\mu_{\mathrm{r}}=\mu_{\mathrm{f}}=\mathrm{M}_{\mathrm{Z}}$. The dashed contours refer to $\mu_{\mathrm{r}}=\mu_{\mathrm{f}}=0.5 \mathrm{M}_{\mathrm{Z}}$ and $2 \mathrm{M}_{\mathrm{Z}}$. In (b) the solid (dashed) contours show the discovery region without (with) the effects of the systematic uncertainties for $\mu_{\mathrm{r}}=\mu_{\mathrm{f}}=\mathrm{M}_{\mathrm{Z}}$.

Higgs can be discoverd in $\varphi \rightarrow h h$ channel

Possibility of light MSSM Higgs bosons

Belyaev, Cao, Nomura, Tobe, Yuan
 PRL 100, 06I801 (2008)
Mainly due to the reduced ZZh coupling, light Higgs boson ($\sim 70-110 \mathrm{GeV}$) is still allowed in MSSM.

This process will be important discovery channel for the light Higgs

Summary

-SM Higgs boson will be discovered at LHC if it exists.

- Non-SM Higgs can be realized in many well-motivated models
\star Gluon-fusion (and/or diphoton decay) of Higgs can be affected by the mechanism to solve the hierarchy problem

Little Higgs models and some SUSY models

* non-SM Higgs decay can change the Higgs branching ratios to SM particles $\quad h \rightarrow a a$ in NMSSM
\star Higgs mixing to other scalar can reduce the interactions to SM particles Higgs-radion mixing Light MSSM Higgs scenario reduction of Higgs signal rate
Non-standard Higgs discovery channels may need to be studied to discover Higgs boson!

backup slides

Collective symmetry breaking

Gauge symmetries $[S U(2) \times U(1)]_{1} \times[S U(2) \times U(1)]_{2}$

$$
\begin{aligned}
& \text { are embedded in global } \operatorname{SU(5)} \\
& Q_{S U(2)_{1}}^{a}=\left(\begin{array}{ccc}
\sigma^{a} / 2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right) \quad Y_{1}=\frac{1}{10}\left(\begin{array}{cc}
3^{3} & \\
& 3 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{array}\right]
\end{aligned}
$$

Either $\operatorname{SU}(3)$ is enough to keep Higgs massless.
Sum of all gauge interactions break both $\mathrm{SU}(3) \mathrm{s}$ and generate the Higgs mass.

\star Top sector
The largest quadratically divergent one-loop contribution to the Higgs mass parameter in the SM comes from the top quark loop. Thus the top sector has to be modified to cancel the large divergence.
Introducing a pair of weak-singlet Weyl fermions U_{L} and U_{R} and making the $\operatorname{SU}(3)$ triplet from the doublet $q_{L}=\left(u_{L}, d_{L}\right)^{T}$ and the singlet $U_{L}: \quad Q_{L}=\binom{-\sigma_{2} q_{L}}{U_{L}}$ the Top Yukawa sector is given by

$$
\mathcal{L}=-\frac{\lambda_{1}}{2} f \epsilon^{i j k} \epsilon^{x y} \bar{Q}_{L i} \Sigma_{j x} \Sigma_{k y} u_{R}-\lambda_{2} f \bar{U}_{L} U_{R}+\text { h.c. }
$$

collective symmetry breaking in the top sector
$\mathcal{L}=-\frac{\lambda_{1}}{2} f \epsilon^{i j k} \epsilon^{x y} \bar{Q}_{L i} \Sigma_{j x} \Sigma_{k y} u_{R}-\lambda_{2} f \bar{U}_{L} U_{R}+$ h.c.
If λ_{1} is zero,
the Higgs does not couple to the top sector, so that there is no corrections to the Higgs mass parameter from the top sector.

If λ_{2} is zero,
the global $\operatorname{SU}(3)$ is unbroken in the top Yukawa sector, so the Higgs is an NGB.

Any contributions to the Higgs mass have to involve both λ_{1} and λ_{2}. The one loop contributions are at most logarithmically divergent.

$$
\begin{align*}
& m_{t}=174.3 \mathrm{GeV}, \quad M_{\text {SUSY }}=350 \mathrm{GeV}, \quad \mu=300 \mathrm{GeV}, \quad M_{2}=300 \mathrm{GeV}, \\
& X_{t}^{\mathrm{OS}}=-750 \mathrm{GeV}(\mathrm{FD} \text { calculation }), \quad X_{t}^{\overline{\mathrm{MS}}}=-770 \mathrm{GeV}(\text { RG calculation }) \\
& A_{b}=A_{t}, \quad m_{\tilde{g}}=500 \mathrm{GeV} . \tag{5}
\end{align*}
$$

Figure 3: $[\sigma \times \mathrm{BR}]_{\mathrm{MSSM}} /[\sigma \times \mathrm{BR}]_{\mathrm{SM}}$ is shown for the channels $g g \rightarrow h \rightarrow \gamma \gamma$ (left plot) and $t \bar{t} \rightarrow t \bar{t} h \rightarrow t \bar{t} b \bar{b}$ (right plot) in the $M_{A}-\tan \beta$-plane for the gluophobic Higgs scenario. The white-dotted area is excluded by LEP Higgs searches.

Higgs total decay width normalized by the SM value

Higgs decay branching ratios, normalized by the SM values

In Case B, because of the largely reduced total decay width in small Higgs mass region, some of the Higgs boson decay branching ratios are increased.

$$
R_{\sigma(X)}=\frac{\sigma^{\mathrm{LH}}(X)}{\sigma^{\mathrm{SM}}(X)} \quad R_{\mathrm{BR}(Y)}=\frac{\mathrm{BR}^{\mathrm{LH}}(Y)}{\mathrm{BR}^{\mathrm{SM}}(Y)}
$$

$R_{\sigma(X)} \times R_{\mathrm{BR}(Y)} \quad$ for $f=(600,700,1000) \mathrm{GeV}$

$m_{h}=120 \mathrm{GeV}$	$R_{\mathrm{BR}(\gamma \gamma)}$	$R_{\mathrm{BR}(\tau \tau)}$	$R_{\mathrm{BR}(b \bar{b})}$	$R_{\mathrm{BR}(V V)}$
$R_{\sigma(g g)}($ Case A)	$0.57,0.68,0.84$	$0.56,0.67,0.83$	-	$0.55,0.66,0.83$
(Case B)	$0.81,0.86,0.93$	$0.51,0.63,0.81$	-	$0.78,0.84,0.92$
$R_{\sigma(V V)}($ Case A)	$0.97,0.98,0.99$	$0.95,0.96,0.98$	-	$0.94,0.96,0.98$
(Case B)	$1.34,1.22,1.09$	$0.84,0.89,0.95$	-	$1.30,1.19,1.08$
$R_{\sigma(t \bar{t} h)}$ (Case A)	-	$0.87,0.90,0.95$	$0.87,0.90,0.95$	-
(Case B)	-	$0.77,0.83,0.92$	$0.77,0.83,0.92$	-
$R_{\sigma(V h)}$ (Case A)	$0.97,0.98,0.99$	-	$0.95,0.96,0.98$	-
(Case B)	$1.34,1.22,1.09$	-	$0.84,0.89,0.95$	-
$m_{h}=200 \mathrm{GeV}$	$R_{\mathrm{BR}(\gamma \gamma)}$	$R_{\mathrm{BR}(\tau \tau)}$	$R_{\mathrm{BR}(b \bar{b})}$	$R_{\mathrm{BR}(V V)}$
$R_{\sigma(g g)}($ Case A)	-	-	-	$0.55,0.67,0.83$
(Case B)	-	-	-	$0.56,0.67,0.83$
$R_{\sigma(V V)}$ (Case A)	-	-	-	$0.90,0.94,0.97$
(Case B)	-	-	-	$0.90,0.94,0.97$

- Higgs production via gluon fusion is suppressed.
- $\gamma \gamma, V V$ decay modes via weak boson fusion can be enhanced in small Higgs mass region in Case B.

FIG. 1: $\operatorname{Br}\left(\Upsilon \rightarrow \gamma a_{1}\right)$ for NMSSM scenarios with various ranges for $m_{a_{1}}$: dark grey (blue) $=m_{a_{1}}<2 m_{\tau}$; medium grey (red) $=2 m_{\tau}<m_{a_{1}}<7.5 \mathrm{GeV}$; light grey (green) $=$ 7.5 $\mathrm{GeV}<m_{a_{1}}<8.8 \mathrm{GeV}$; and black $=8.8 \mathrm{GeV}<m_{a_{1}}<$ 9.2 GeV . The plots are for $\tan \beta=10$ and $M_{1,2,3}\left(m_{Z}\right)=$ $100,200,300 \mathrm{GeV}$. The left plot comes from the A_{λ}, A_{κ} scan described in the text, holding $\mu_{\mathrm{eff}}\left(m_{Z}\right)=150 \mathrm{GeV}$ fixed. The right plot shows results for $F<15$ scenarios with $m_{a_{1}}<$ 9.2 GeV found in a general scan over all NMSSM parameters holding $\tan \beta$ and $M_{1,2,3}$ fixed as stated.

Figure 2: $\sigma(\mathrm{gg} \rightarrow \phi)(\mathrm{a})$ and $\operatorname{Br}(\phi \rightarrow \mathrm{hh})(\mathrm{b})$ as a function of the parameter ξ for two values of Λ_{ϕ}, 1 and 5 TeV . On the left plot the cross section of $g g \rightarrow \mathrm{H}_{\mathrm{SM}}$ process for the SM Higgs boson of 300 $\mathrm{GeV} / \mathrm{c}^{2}$ mass is also shown as the horizontal line.

Figure 3: Precision electroweak allowed [solid (red) regions] and disallowed regions (at 90\% CL) of the radion mass as a function of Λ_{ϕ}, while holding fixed $m_{h}=350 \mathrm{GeV}$ and $\xi=-1$. The masses of the Higgs and radion physical eigenstates can be greater than the SM Higgs boson precision electroweak 95% CL upper limit of 219 GeV . The thick (pink) dashed line to the right of the theoretically disallowed tower is the LHC contour for $r^{h} \equiv N_{S D}^{h} / N_{S D}^{S M}=0.9-$ to the right of this contour $0.9<r^{h}<1$. The thick (blue) solid line to the left of the tower is the contour for $r^{h}=1.1$ - above this contour $1<r^{h}<1.1$. Between the tower and the thinner dotted (cyan) line, $N_{S D}^{\phi}>5$. See text for more details.

Light Higgs scenario (LHS) and "LEP excess" scenario Zh channel $(h \rightarrow b \bar{b})$
$S_{95}=\sin ^{2}(\beta-\alpha) \operatorname{BR}(h \rightarrow b \bar{b})$

$$
B_{s} \rightarrow \mu^{+} \mu^{-}
$$

Large $\tan \beta$ region is strongly constrained.

Higgs Production at hadron colliders

gluon fusion (gg)

This coupling
is suppressed
in the LHS
Vh associated production (Vh)
$h H^{+} / A H^{+} \quad$ production at LHC

$$
\sin (\beta-\alpha) \quad \cos (\beta-\alpha)
$$

suppressed in LHS

angle-independent

Since all MSSM Higgs bosons are not heavy in LHS, this production can be sizable at LHC.
$A H^{+}$production rate

- CP-odd Higgs is light ($\sim 100 \mathrm{GeV}$), the production cross section is big at LHC.
- In addition to $\mathrm{AH}+$ mode, we have $\mathrm{hH}+$ mode in our LHS.

Signature rate at Tevatron and LHC

At LHC, the points with more than I fb can be covered.

Signal process

SM background

$$
W b \bar{b}: q q^{\prime} \rightarrow b \bar{b} W^{+}, W^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \bar{\nu}
$$

$$
\begin{aligned}
t \bar{b} & : q q^{\prime} \rightarrow W^{+} \rightarrow t \bar{b}, t \rightarrow b W^{+}, W^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \bar{\nu} \\
W Z & : q q^{\prime} \rightarrow W^{+} Z^{0}, Z^{0} \rightarrow b \bar{b}, W^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \bar{\nu} \\
W g & : q g \rightarrow q^{\prime} t \bar{b}, t \rightarrow W^{+} b, W^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \bar{\nu} \\
t \bar{t} & : q q(g g) \rightarrow t \bar{t}, t \rightarrow W^{+} b, W^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \bar{\nu}, \bar{t} \rightarrow \bar{b} W^{-}
\end{aligned}
$$

Effect of cuts

TABLE II: Numbers of $A H^{+}$signal and background events for the sample point in the $b \bar{b} \pi^{+} E_{T}$ channel at the LHC with an integrated luminosity of $100 \mathrm{fb}^{-1}$. The b-tagged efficiency defined in Eq. 55 is included and the kinematics cuts listed in each column are applied sequentially.

	Basic cut	$E_{T}>50 \mathrm{GeV}$	$p_{T}^{\pi}>40 \mathrm{GeV}$	$\left\|m_{b \bar{b}}-m_{A}\right\|<10 \mathrm{GeV}$	$m_{T}>80 \mathrm{GeV}$
$A H^{+}$	214	169	107	103	40
$h H^{+}$	259	199	122	1	0
$W b \bar{b}$	3765	1229	394	30	2
$W Z$	361	128	40	10	1
$t \bar{b}$	778	387	106	8	0
$W g$	298	153	43	2	0
$t \bar{t}$	50	37	8	1	0
Signal (S)	214	169	107	103	40
Background (B)	5511	2133	713	52	3
S / B	0.04	0.08	0.15	1.98	13.33
S / \sqrt{B}	2.88	3.66	4.01	14.28	23.09

Basic cuts $\quad p_{T}\left(b, \bar{b}, \pi^{+}\right)>15 \mathrm{GeV},\left|\eta\left(b, \bar{b}, \pi^{+}\right)\right|<3.5$,
$\Delta R>0.4$ between any two observable final state partons
$\Delta R\left(\equiv \sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}\right) \quad \Delta \phi$ and $\Delta \eta$ are the separation in azimuthal angle and rapidity, respectively.

TABLE III: Numbers of $h H^{+}$signal and background events for the sample point in the $b \bar{b} \pi^{+} \mathbb{E}_{T}$ channel at the LHC with an integrated luminosity of $100 \mathrm{fb}^{-1}$. The b-tagged efficiency defined in Eq. 55 is included and the kinematics cuts listed in each column are applied sequentially.

	Basic cut	$E_{T}>50 \mathrm{GeV}$	$p_{T}^{\pi}>40 \mathrm{GeV}$	$\left\|m_{b \bar{b}}-m_{h}\right\|<10 \mathrm{GeV}$	$m_{T}>80 \mathrm{GeV}$
$h H^{+}$	259	199	122	119	49
$A H^{+}$	214	169	107	1	0
$W b \bar{b}$	3765	1229	394	39	3
$t \bar{b}$	778	387	106	8	0
$W g$	298	153	43	4	0
$t \bar{t}$	50	37	8	1	1
$W Z$	361	128	40	9	1
Signal (S)	259	199	122	119	49
Background (B)	5466	2103	698	62	5
S / B	0.05	0.09	0.17	1.92	9.8
S / \sqrt{B}	3.50	4.34	4.62	15.11	21.9

FIG. 30: Distributions of invariant mass $m_{b \bar{b}}$ (after imposing the basic, E_{T} and p_{T}^{π} cuts) and transverse mass m_{T} (after imposing the basic, E_{T}, p_{T}^{π} and the Higgs mass window cuts): (b) $A H^{+}$ and (c) $h H^{+}$. Here $\quad m_{T}=\sqrt{2 p_{T}^{\pi} E_{T}^{\mathrm{mis}}\left(1-\cos \phi^{\prime}\right)}$

Significance contour of $\mathrm{AH}^{+} / \mathrm{hH}^{+}$

FIG. 32: Contours of the significance and event numbers of the $A H^{+} / h H^{+}$processes at LHC after imposing the mass window cut (first row) and the transverse mass cut (second row) in the case of positive μ.
To reach 5 -sigma significance, only $5-10 \mathrm{fb}^{\wedge}-\mathrm{I}$ integrated luminosity is required!

