研究会「LHCが切り拓く新しい素粒子物理学」 東京大学,2008年3月28日

寺師 弘二 東京大学素粒子物理国際研究センター

Jet and MET

Jets and MissET are copiously produced at hadron colliders

- mini-jets, QCD jets
- tt \rightarrow WbWb \rightarrow Iv + qq + bb
- SUSY \rightarrow multi-jets + 2 LSPs
- Black Hole \rightarrow multi-jets

-

We would like them to represent

- Jet : collimated spray of particles (or quarks and gluons)
- MissET: non-interacting particles e.g, neutrinos, LSP in SUSY, ...
- Most challenging physics objects to reliably measure
 - Theoretically not unique (jet)
 - Detector and environmental limitations

Aim (or Outline) of This Talk

How do we measure jets and Missing ET at ATLAS?

- ▶ Hadronic energy measurement in calorimeters
- ▶ Jet and Missing ET reconstruction
- Expected performance
- ▶ Performance validation with real data

How can we improve baseline performance? → Energy flow approach (one possibility...)

Hadronic Energy Measurement

Generic feature of hadronic shower in calorimeters

- More complex than EM showers
 - ***** Visible EM ~50% : e, γ , $\pi^0 \rightarrow \gamma \gamma$
 - * Visible non-EM ~25% : h[±], μ^{\pm} ionization
 - ✤ Invisible ~25% : nuclear break-up and excitation
 - * Escaped ~2% : ν , μ^{\pm}
- Only part of the deposited energy is sampled
- Fractions are energy dependent
- Large fluctuations

Hadronic energy measurement at ATLAS

- ♦ Uses similar e/h for LAr and Tile and longitudinal samplings (→3-D signal clustering)
- Provides some degree of software compensation
- Accounts for invisible and escaped energy

νμ

ATLAS Calorimeters

Hadronic Signal in Calorimeters

- LAr/Tile calorimeter readouts sample a shaped physics pulse from the calorimeter in synch with 25 ns clock
- For LAr:
 - Signal reconstruction based on Optimal Filtering procedure (5 samples)

Energy = ADC2MeV
$$\cdot \sum_{i=1}^{5} a_i$$
 (ADC_i - pedestal)

- Optimal Filtering Coefficients (OFC) **a**_i calculated from:
 - ✓ Known physics pulse shape
 - Pulser system in case of EMB, EMEC and HEC
 - Beam tests (so far) for the FCAL
 - \checkmark Known pedestals and noise autocorrelation matrix
 - From noise measured in random trigger events
- ADC2MeV = ADC2DAC x DAC2µA x µA2MeV (from calibration pulser system and beam tests)
- **Reconstructed energy is at EM scale** (\rightarrow subject to hadronic calibration)

Noise in Calorimeters

Electronic noise

- Unavoidable basic fluctuation on top of each calorimeter cell signal
- Obtained from test beam and commissioning phase
- Ranges from ~10 MeV (central) to ~600 MeV (forward) per cell

Pile-up noise

- Depends on instantaneous luminosity
- Illuminates entire calorimeter (most significant in forward)
- Major contributions from out-of-time signal due to calorimeter shaping functions
- Ranges from ~20 MeV (central) up to about ~10 GeV (forward) per cell

Electronic Noise

Total Noise (electronic+pile-up) @ 10³⁴ cm⁻²s⁻¹

Calorimeter Signal : Towers

Impose regular grid view on event

- $\Delta \eta \times \Delta \varphi = 0.1 \times 0.1$
- Motivated by event E_T flow
- Natural choice for trigger

Sum cell signals in tower

- Include all cells (no selection)
 - → Significant contribution from noise cells

Sum typically includes geometrical weight

Calorimeter Signal : Topological Clusters

- Clustering over different sampling layers and calorimeters
- Based on cell energy significance in units of $\sigma_{noise} = \sigma_{electronics} \oplus \sigma_{pile-up}$
- Correlated signals taken into account

(Jet with $p_T > 50 \text{ GeV}$) <u>Threshold</u> (default) Cells along the perimeter Cluster seed : Neighbor cells : of the cluster : $|E_{cell}|/\sigma_{noise} > 0$ $|E_{cell}|/\sigma_{noise} > 4$ $|E_{cell}|/\sigma_{noise} > 2$ otan ef×sin 9×sin 2000 **10⁵** 10⁵ = 10³ É 10⁴ **10³** -0.0510² 10^{2} 10² -0.05 0.05 -0.05 0.05 -0.050.05 $|\tan \theta| \times \cos \phi$ $|\tan \theta| \times \cos \phi$ $|\tan \theta| \times \cos \phi$

 → Best performance in test beam
 → Can include very small signal cells due to neighboring cell signals

Topological cluster studies with cosmic data → H. Okawa, JPS meeting 26aZE5, March 26, 2008

Topo. clusters in 1st FCal layer

Jets in ATLAS

Jet Finders in ATLAS

Cone Jet Finders

* Seeded fixed cone

- Iterative cone finder starting from seeds
- Free parameters:
 - seed E_T threshold (typically I GeV)
 - cone size R (=0.4 or 0.7)
- Split and merge with overlap fraction threshold of 50%
- No infrared or collinear safe

Alternative approaches

- Seedless cone
 - Each input is seed (theoretically favored)
 - Infrared and collinear safe
 - Need split and merge
- MidPoint cone
 - Place new seed between two cones
 - Need split and merge
 - Improved infrared and collinear safe

Dynamic Angular Distance Jet Finders

* Kt algorithm

- Combines proto-jets if relative p⊤ is smaller than p⊤ of more energetic proto-jet
- No seeds needed
- Fast implementation available

Alternative approaches

- Aachen/Cambridge algorithm
 - Similar to Kt, but only distance between objects considered (no use of pT)

- Optimal Jet Finder

- Based on the idea of minimizing a test function sensitive to event shape
- Use unclustered energy in jet finding

Seeded fixed cone and Kt are popular algorithms at ATLAS

Tower-Based Jet

Collect all EM energy cell signals into projective towers

- No explicit use of longitudinal readout granularity in jet finding
- Input signal = "Uncalibrated" EM energy scale

Cancel noise by re-summation of the towers

Towers with E<0 are added to near-by towers with E>0 until the resulting proto-jet has E>0 (all cells are kept!)

Run jet finding on the proto-jets

Apply "global" cell level calibration (→next slide)

- Retrieve all cells used in the jet
- Apply cell level calibration weights (derived from MC) as a function of cell energy density and cell location
- Obtain hadronic energy scale jets with dead material corrections

Apply residual corrections for (E_T, η) and jet algorithm dependence

Results are physics jets calibrated at particle level

Global Hadronic Calibration

Derived from QCD cone 0.7 jets in Pythia dijet production

Cover wide p_T range from ~10 GeV to a few TeV

For calorimeter tower jet

- Find a matched (stable interacting) particle jet
- Extract cells from the tower jet
- Determine cell weights as a function of cell energy density and calorimeter region by minimizing

$$\mathbf{X}^{2} = \sum_{i=1}^{N_{events}} \sum_{i=1}^{N_{jets}} \left(\frac{E_{jet}^{Reco} - E_{jet}^{Truth}}{E_{jet}^{Truth}} \right)$$

where

$$E_{jet}^{Reco} = \sum_{i}^{Cells} w_i(\rho_i, X_i) \cdot E_i \qquad \rho_i = \left(\frac{E_i}{V_i}\right) \begin{array}{l} E_i : cell energy (EM scale) \\ V_i : cell volume \\ X_i : cell location \\ w_i : cell calibration weights \end{array}$$

• Correct residual (E_T, η) -dependent signal variations after cell weights are fixed

 \rightarrow This is called HI calibration

Tower Jet : Performance

Tower Jet : Problems

Tower-based Jets

Too many non-signal cells included in jet

- Not only lateral but longitudinal sum with (large) fixed area
- Relatively large noise contribution

Input calibrated only at EM scale

- Relative mis-calibration (>30%) between towers possible
- Could produce "huge" jets (especially for Kt)

Cluster-based Jets

- Better control of noise level at input to jet
- Allow to use "calibrated" input to jet finder
 - Local hadron calibration to topological clusters
 - Smaller relative mis-calibration expected (~5% or less)
 - Possible to select inputs like particle selection for truth jets

Local Hadron Calibration

Start with topological clusters

Cluster classification

- Clusters classified as either EM, hadronic or unknown, based on
 - EM fraction
 - cluster shape information

Hadronic weighting

Derive and apply weights to cells in hadronic clusters

Out-of-cluster corrections

 Correct for energy deposited in calorimeter, but outside of cluster

Dead material corrections

Correct for energy lost in uninstrumented regions of the detector

> Classification, weighting and correction algorithms all based on single particle MC simulation

Cluster-Based Jet

CaloCells

Cluster Jet : Performance (I)

Cluster Jet : Performance (II)

- Similar stochastic and constant terms between two jet types
- Cluster jets have ~13%(23%) smaller noise term than tower jets for 0.0<η<0.5 (1.5<η<2.0)₁₉

Performance Validation

Validation with real data is crucial as ATLAS calibration scheme is MC based

Jet Energy Scale

- $\checkmark \gamma/Z$ jet p_T balance
- ▶ $W \rightarrow jj$ using M_W in tt (light quark)

Jet Energy Resolution

- Dijet balance
- Kt balance
- Based on Tevatron experience
- Utilize pT balance between 2 jets
- Soft radiation effects taken into account

Very High p_T Jet

- ▶ Very high p_T jet in TeV range is an unexplored territory at collider experiment
- Calibration challenging as O(TeV) p_T is too high to use γ/Z jet balance method
 - → Exploring the technique to calibrate jets at TeV range

Very High p_T Jet

Option 2. Track-based Method

- Use QCD di-jet events
 - count all tracks inside the leading jet cone
 - calculate ΔR values over all combinations for leading N tracks and take mean value
- Complementary to multi-jet balance method
- Need to study flavor (in)dependence

MET in ATLAS

MissET in ATLAS

Missing ET is an event variable representing E_T of "invisible" particles $\square \longrightarrow MissET = \sum_{i=1}^{v, \tilde{\chi}, \tilde{G}, ...} E_{T^{i}} = -\sum_{i=1}^{detected} E_{T^{i}}$ (concept is simple...)

Measure from calorimeter cells above noise threshold at ATLAS

CaloCells $MissE_{X(Y)} = -\sum_{i=1}^{N} E_{X(Y)}^{i}, MissET = [MissE_X^2 + MissE_Y^2]^{1/2}$

Correct for muons and energy loss in dead materials
 Correct for hadronic jets with cell-level wights (H1 calibration)

Global Calibration

Apply global cell-level weights to all signal at once

Refined Calibration (default)

- Identify physics objects in an event
 e, γ, τ, jets, muons, unused topological clusters
- Decompose objects into constituent cells
- Calibrate cells with object calibration weights

MissET Performance

<u>MissET Scale</u>

Fairly robust around a few % over wide MissET range and different processes

Z→ττ
 W→ev, μv
 tĒ semi-leptonic
 A→ττ (m_A = 800 GeV)
 SUSY (~I TeV mass)

MissET Resolution

Follow $\sigma = a [\Sigma E_T]^{1/2}$ over a very wide range of ΣE_T

MET Validation : Mini. Bias

- Check if various distributions are consistent with expectations
 MissEX/Y, MissET, φ(MissET), MissEX resolution vs ΣΕΤ
- Background rejection to be done
 - Beam Gas, Beam Halo, Empty events
 - Any additional quality cut after Minimum Bias Trigger?

For details

- Etmiss CSC notes, MinBias section by Anna Phan, Naoko Kanaya
- Hideki Okawa, MinBias WG Meeting, 10 Sep. 2007

MET Validation : $W \rightarrow Iv$

W's Transverse Mass : $M_T = [2 p_T^{\nu} p_T^{\mu} (1 - \cos\Delta \varphi)]^{1/2}$

W→µv @ 28 pb⁻¹

I Isolated μ with p_T>20 GeV, $|\eta|$ < 2.5 & MissET>20 GeV

Template Method

Energy Flow Approach for Improvement

Energy Flow Implementation

- Extrapolate tracks to calorimeter to find matched cluster(s)
- If matched cluster found, subtract expected energy deposit (obtained from single particle MC) from the cluster
- Subtraction performed using cell removal or adjusting cluster energy
- If E^{clus} (before subtraction) < $E^{expected}$ $k_2 \sigma^{expected}$, use cluster instead of track
- If E^{clus} (after subtraction) < $k_1 \sigma^{expected}$, the cluster is discarded

Energy Flow : Hadronic W in Top

Apply energy flow algorithm to hadronic W decay in all hadronic tt events
 ▶ Select jets from W → jj by looping over all jet combinations and minimizing

$$\sqrt{\left(\frac{m_{w}^{Reco}-m_{w}^{PDG}}{\sigma_{w}^{PDG}}\right)^{2}+\left(\frac{m_{top}^{Reco}-m_{top}^{PDG}}{\sigma_{top}^{PDG}}\right)^{2}}$$

Select \geq 4 jets with pT > 50 GeV, MissET > 40 GeV

Better angular resolution for energy flow jets than local hadron topocluster jets
→ Improves W mass resolution over local hadron topocluster jets

Track Jet

Track Jet : Jet Energy Resolution

Add information from tracker to improve resolution after JES corrections

• E.g., $f_{trk} = \Sigma \rho \tau^{Track} / \rho \tau^{Jet}$ fraction of jet p_T carried by charged tracks

Track Jet : Pile-up Rejection

JVF[jet1,vtx1] =

Z

JVF[jet1,vtx2] = 0

ØVF[jet2,vtx1] = f

JVF[jet2,vtx2] = 1-f

>=6

- ▶ Soft pile-up noise \rightarrow Topological Clustering
- "Hard" (minimum bias jet) pile-up?
 - \rightarrow 3-D (η , ϕ ,Z) jet finding using tracks
 - Associate jets to primary vertices
 - Evaluate fraction **F** of charged track energy in each jet originating in each identified primary vertex

Minimum bias events do make hard jets!

Track Jet : Fake MET Rejection

- Select events where MET pointing to any problematic calorimeter regions in φ
- See if any track-jet is reconstructed along the direction without accompanying calorimeter jet

Summary

No real summary as performance studies are on going, while ...

- Jet and Missing ET performance at ATLAS looks very promising over wide kinematic range and different processes
- Most ATLAS calibrations and corrections are based on Monte Carlo simulations
 - → Validation of detector simulation and calibration with real data is very crucial
- Many (unexpected) challenges ahead of us, but being ready to attack problems with useful tools