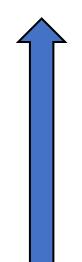
ヒッグスって何?

- 1 質量の意味
- 2 LHCでのヒッグス生成過程
- 3 Higgs崩壊過程
- 4 崩壊幅
- 5 結合定数の結果
- 6 質量測定
- 7 125GeVが意味すること
- 8 結合定数
- 9 ヒッグス発見の意味

素粒子のスピン?

2種類:進行方向むいっているか


その反対

スピンの意味 角運動量演算 L+Sが保存量 スピン ½ -> 2回転 対称

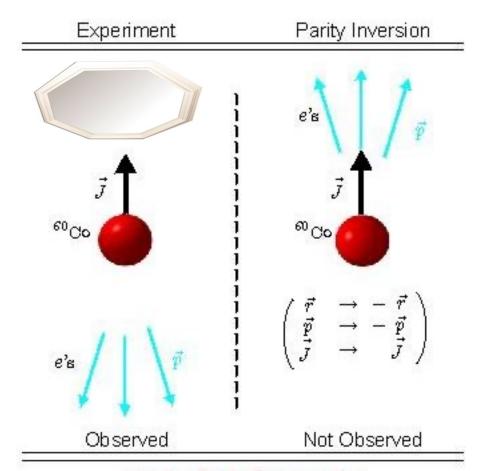
右巻き(R) スピン 左巻き(L) 進行方向 スピン

スピン: 角運動量と同じ性質

鏡で映した関係:パリティー

スピン

スピン:角運動量=r*p


右巻き (R)

素粒子がもつ 固有の性質

スピンの2価性?

1.素粒子の質量って何?カイラル対称性の破れ

パリティーの破れの発見

左巻 *v* いる 右巻 *v* いない

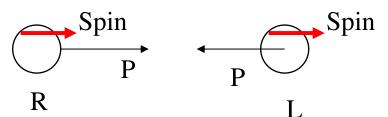
左巻き (弱い力の電荷あり)

ニュートリノ

 ν_{L}

電子 ${
m e_{_L}}$

全く 別の粒子

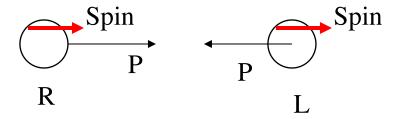

右巻き (感じない)

電子

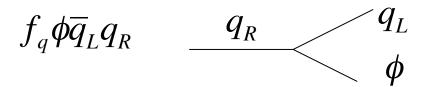
e__R

質量があると、 光速より遅い

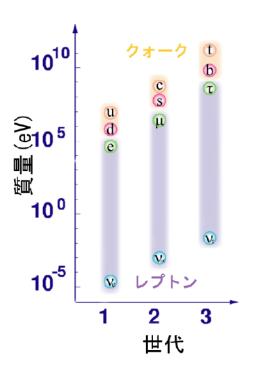
光速でローレンツ変換



右巻と左巻がまざってしまう』!!

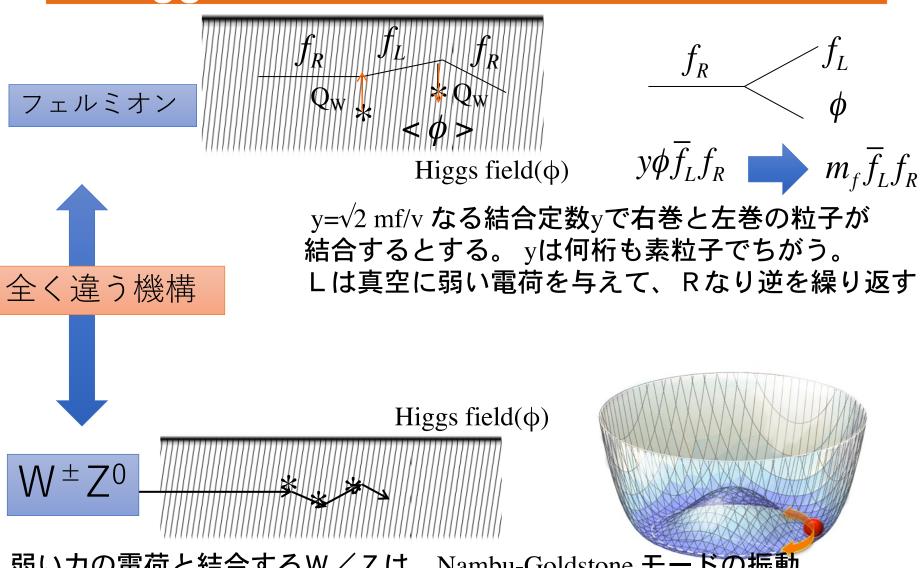

Violates Parity Conservation

素粒子で「混ざる」 ってのを見ると


光速でローレンツ変換(質量がある場合)

質量: 慣性の大きさパラメーター dF=mdv L - R のmixing parameter 違う素粒子LとR: $m_q \overline{q}_L q_R$

RとLはもともと全く違う粒子(量子数が違う) R(ヘリシティー:+向き)を消して、L(反対向き) 真空が、弱い相互作用の電荷をもった"状態"



m (e) = 0,000511 GeV/
$$c^2$$

m (τ) = ~1,8 GeV/ c^2

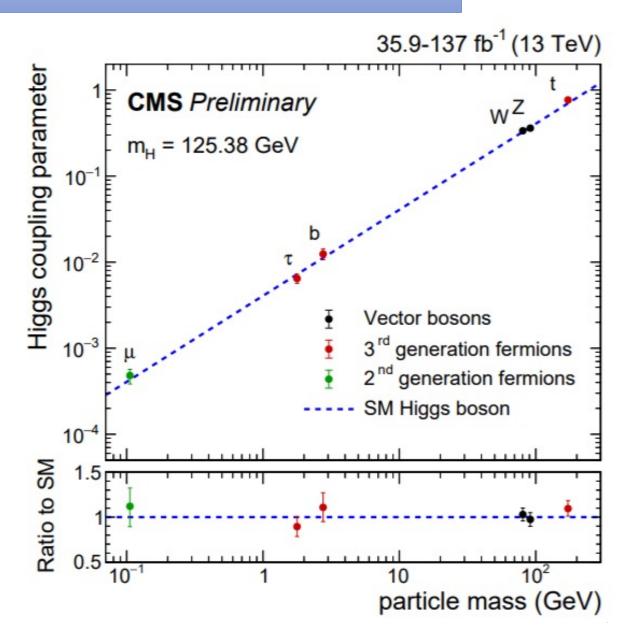
$$m (u) = 0,005 \text{ GeV/}c^2$$

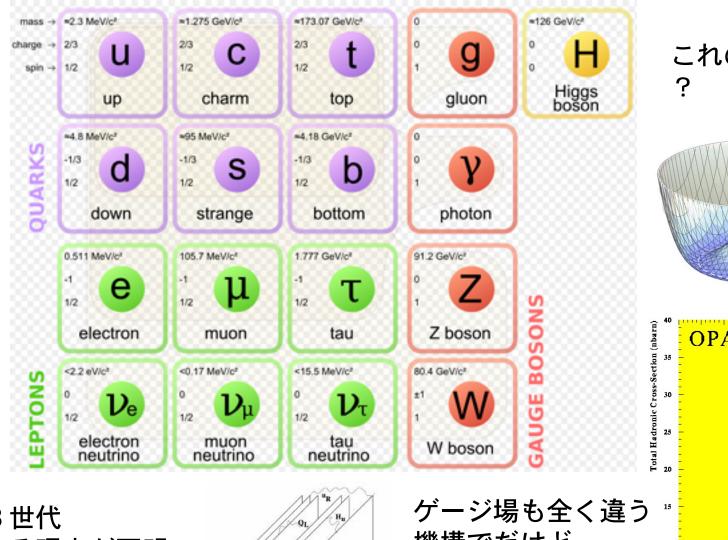
 $m (t) = \sim 174 \text{ GeV/}c^2$

Yukawa結合f なんで こんなに小さいの? Top=1 電子10^-5 ニュートリノ?

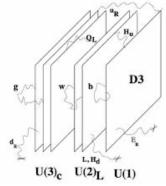
Higgs 場の中で何が起こっている?

弱い力の電荷と結合するW/Zは、Nambu-Goldstone モードの振動 この振動は、mass-less (NGB) W/Zの縦波成分 → 質量

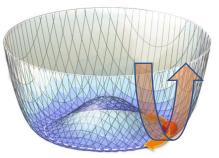

 $W^{\pm}Z^{0}$

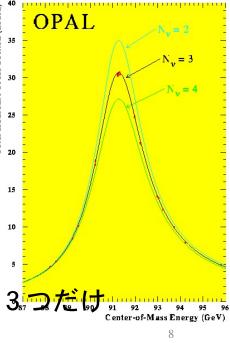

弱い力の電荷と結合するW/Zは、Nambu-Goldstone モードの振動 この振動は、mass-less (NGB) W/Zの縦波成分 → 質量

10-20%程度の誤差で 1本の直線


1. 湯川結合 が正しい トイレが正し かった。。。

 世代は ヒッグス が原因

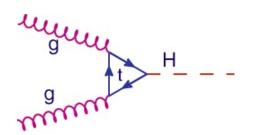

3世代 ある理由が不明 この世代の区別をし ヒッグス場との 結合の強さ



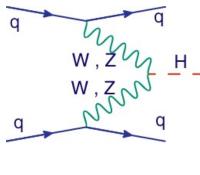
ゲージ場も全く違う 機構でだけど このヒッグス場が

> Z->vv あとで

これの質量も ?



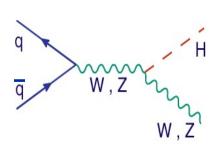
2.LHCでの生成過程と効く結合


Gluon Fusion

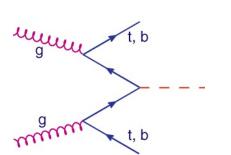
Vector Boson Fusion

gluonは、massless higgsと直接接合しない。 top のloopで(Yt) gluon多いのでの大

LHCって実は、グルオン グルオンコライダー

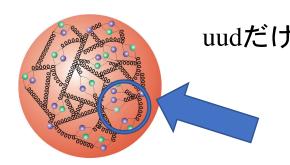


Valenc quarkで large Xのquarkが -多い Higt Pt jetでBGを 押さえることが出 来る。


 $\tau \tau$

W・Zとの随伴生成

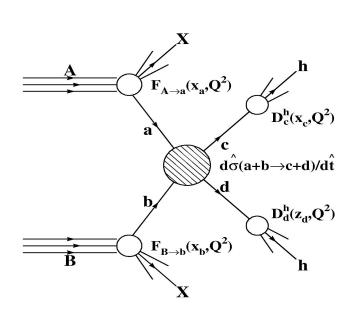
Top/bottomとの随伴生成


LEP,Tevatronの 主チャンネル。 W->Inuでtrigger H->WWW

Topは特徴的なので発見しやすい。 Topの湯川結合測 定チャンネル

bb, ττ

トップクォークとの結合に使える


 $R=\sqrt{Q^2}$ のサイズでみる

uudだけでなく、陽子の中は、quark, gluonがいっぱい。 その存在割合がわからないと、反応の cross-sectionが決められない。

量子数を担っている: Valence quark それ以外: Sea quark gluon

Q²見る大きさ

$$\sum_{b} \int dx_a dx_b f_a (x_a, Q^2) f_b (x_b, Q^2) \hat{\sigma}_{ab} (x_a, x_b)$$

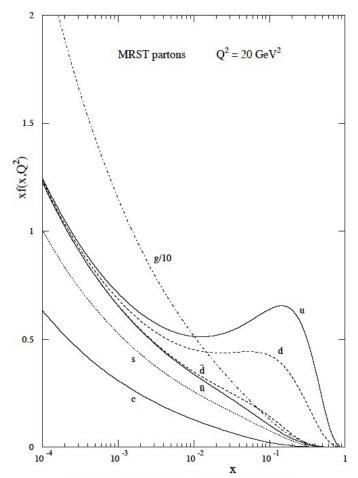


Fig. 3. MRST partons at $Q^2=20~{\rm GeV^2}$

ハドロンコライダーの運動学

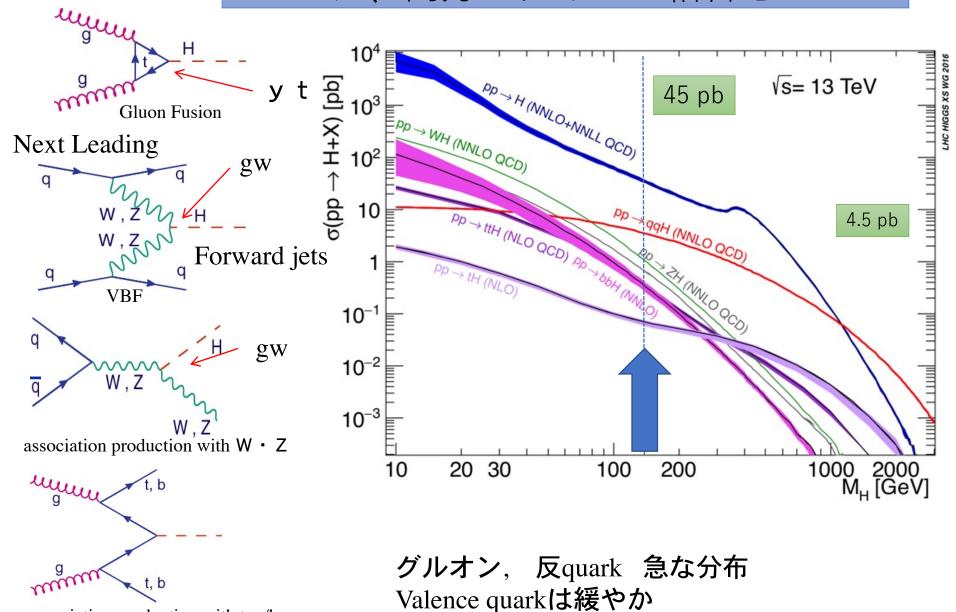
x: BjorkenOx

```
重い粒子を生成して研究 エガスきい声があっ (PDF)
   LHC 7-12 u,d, 9
                   2>0,17.13 U, d & 2015
   Te Vatron 7:13 ud, ūd
               (PP)
   鱼川明理 ca>=√スなかたきい かったは 大きくなれるい
                        ユノスコカ 同程度の時 初季の 「ユノスス
                                カアモにひる
                中心にある
何故 Rapidity ある弦を音を非対称コライダーで使うのか?
  y = = on ( Ethz ) = = on (Ethz)2 = on -
             = tank+ ( = ) = tank+ ( pz)
```

== 7 transverse mass m== m2+ P2+ Pg

P = (PT cosq, PT sing. MT sinky) E=MT cosky

$$\sqrt{x_1 x_2} \sim 10^{-2} \text{ x>} 10^{-4} \text{ lpl} < 4.6$$


$$\sqrt{x_1 x_2} \sim 10^{-1} \text{ x} > 10^{-2} \text{ lpl} < 2.3$$

- (1) ヒッグスの物理 quark-反quark, gluon-gluon,
- (2) 新現象の物理 quark-quark, gluon-quark コライダー

Leading

association production with top/b

LHCは、両方のタイプの結合をcheck

14

3. Higgsの崩壊モード

H

W⁺, Z, t, b, c,
$$\tau^+$$
,...., g, γ
W⁻, Z, t, b, c, τ^- ,..., g, γ

 $WWH = \frac{e}{\sin\theta} m_{\scriptscriptstyle W}$

$$ZZH = \frac{e}{\sin\theta\cos\vartheta} m_Z$$

$$f\bar{f}H = \frac{\sqrt{2}m_f}{v}$$

Massless -> No coupling Loop

$$\int \frac{1}{2m_H} \sum_{spin,color} |M|^2 dLIPS$$

$$dLIPS = (2\pi)^4 \delta^4 (q - p_1 - p_2) \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2}$$

2body phase space

$$\Gamma(H \to f\bar{f}) = N_f \frac{G_F m_H m_f^2}{4\sqrt{2}\pi} (1 - \frac{4m_f^2}{m_H^2})^{\frac{3}{2}}$$

$$\Gamma(H \to W^+W^-) = \frac{G_F m_H^3 \beta_W}{8\sqrt{2}\pi} \left(1 - \frac{4m_W^2}{m_H^2} + \frac{12m_W^4}{m_H^4}\right) \,,$$

$$\Gamma(H \to ZZ) = \frac{G_F m_H^3 \beta_Z}{16 \sqrt{2} \pi} \left(1 - \frac{4 m_Z^2}{m_H^2} + \frac{12 m_Z^4}{m_H^4} \right) \,,$$

なぜ Mw^2で ない?

$$|\mathcal{M}|^2 = \left(\frac{gm_Z}{\cos\Theta_W}^2 \sum_{\lambda,\rho} g_{\mu\nu} \epsilon_{1\lambda}^{*\mu} \epsilon_{2\rho}^{*\nu} g_{\alpha\beta} \epsilon_{1\lambda}^{*\alpha} \epsilon_{2\rho}^{*\beta}\right)$$

 $\frac{\mathrm{i}vg^2}{2\cos^2\theta_\mathrm{W}}g^{\alpha\beta}$

$$\begin{aligned} |\mathcal{M}|^2 &= \left(\frac{gm_Z}{\cos\Theta_W}\right)^2 g_{\mu\nu} \left(-g^{\mu\alpha} + \frac{p^{\mu}p^{\alpha}}{m_Z^2}\right) g_{\alpha\beta} \left(-g^{\nu\beta} + \frac{q^{\nu}q^{\beta}}{m_Z^2}\right) \\ &= \left(\frac{gm_Z}{\cos\Theta_W}\right)^2 \left(-g^{\alpha}_{\nu} + \frac{p_{\nu}p^{\alpha}}{m_Z^2}\right) \left(-g^{\nu}_{\alpha} + \frac{q^{\nu}q_{\alpha}}{m_Z^2}\right) \\ &= \left(\frac{gm_Z}{\cos\Theta_W}\right)^2 \left(4 - \frac{p_{\alpha}p^{\alpha}}{m_Z^2} - \frac{q^{\nu}q_{\nu}}{m_Z^2} + \frac{p_{\nu}q^{\nu}p^{\alpha}q_{\alpha}}{m_Z^4}\right) \\ &= \left(\frac{gm_Z}{\cos\Theta_W}\right)^2 \left(2 + \frac{(p \cdot q)^2}{m_Z^4}\right) \\ &|\mathcal{M}|^2 &= \left(\frac{gm_Z}{\cos\Theta_W}\right)^2 \left(2 + \frac{\left(m_H^2 - 2m_Z^2\right)^2}{4m_Z^4}\right) \end{aligned}$$

 $m_H^2 = (p+q)^2$ $= p^2 + q^2 + 2p \cdot q$ $= 2m_Z^2 + 2p \cdot q$ so $p \cdot q = \frac{m_H^2 - 2m_Z^2}{2}$

$$= \left(\frac{gm_H^2}{2m_Z \cos \Theta_W}\right)^2 \left(1 - \frac{4m_Z^2}{m_H^2} + \frac{12m_Z^4}{m_H^4}\right)$$

$$= \left(\frac{gm_H^2}{2m_W}\right)^2 \left(1 - \frac{4m_Z^2}{m_H^2} + \frac{12m_Z^4}{m_H^4}\right)$$

- (1) β の3乗ではなく、 β の1乗: () の中の第2式までとると β の3乗の様にみえるけど、 kinematicで出てきたtermでなく、不変振幅からきたもの
- (2) 不変振幅は、

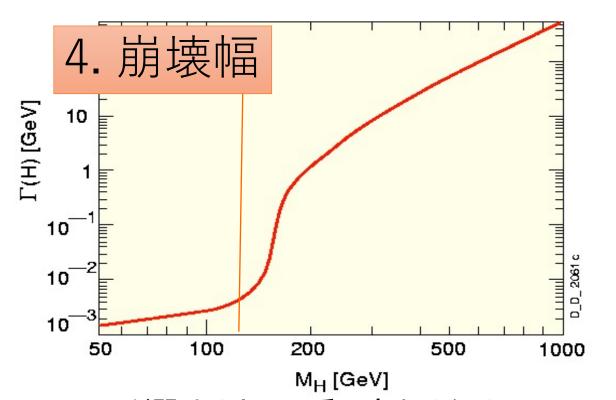
$$\sum_{\lambda} \varepsilon_{\mu}^{(\lambda)*} \varepsilon_{+}^{(\lambda)} = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{M^{2}}$$

の2乗なので もっと複雑な形。

正しい答え

$$\Gamma(H \to W^+W^-) = \frac{G_F m_H^3 \beta_W}{8\sqrt{2}\pi} \left(1 - \frac{4m_W^2}{m_H^2} + \frac{12m_W^4}{m_H^4}\right),$$

$$\Gamma(H \to ZZ) = \frac{G_F m_H^3 \beta_Z}{16\sqrt{2}\pi} \left(1 - \frac{4m_Z^2}{m_H^2} + \frac{12m_Z^4}{m_H^4} \right),$$

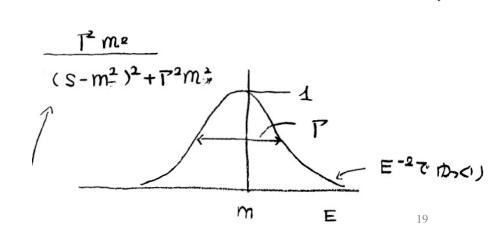

Higgs BR + Total Uncert $b\overline{b}$ CC 10⁻³ 10⁻⁴ 100 120 140 160 180 200 M_H [GeV]

崩壊分岐比

Decay channel	Branching ratio [%]	
$H o b ar{b}$	57.5 ± 1.9	
$H \to WW$	21.6 ± 0.9	
$H \rightarrow gg$	8.56 ± 0.86	
H o au au	6.30 ± 0.36	
$H \to c\bar{c}$	2.90 ± 0.35	
$H \to ZZ$	2.67 ± 0.11	
$H o \gamma \gamma$	0.228 ± 0.011	
$H \to Z \gamma$	0.155 ± 0.014	
$H o \mu \mu$	0.022 ± 0.001	

 $Br(H->bb) = \Gamma(H->bb) / \Sigma \Gamma(H->)$

- 1) 自然は面白い値 125GeV だと、全部みることが可能になる。
- 2) 戦力は集中しないといけない **120GeVと予想して γγ, WW, ττの順番と思って資源を集中**125GeVで、γγ,ZZ,WW,(ττ)



傾きの違い 1乗 vs 3乗

寿命が測定出来る 不確定性原理 寿命 Δt α ΔE t ~ 1/Γ これが観測

H->WWが開けると 3 乗で大きくなる。 フェルミオンが主な時 $\Gamma = O(1-10)$ MeV 200 GeV $\Gamma = O(1$ GeV) 検出器の 分解程度になる。 $\Gamma = O(1-10)$ 位 $\Gamma = O(1-10)$ で $\Gamma = O(1-10)$ が Γ

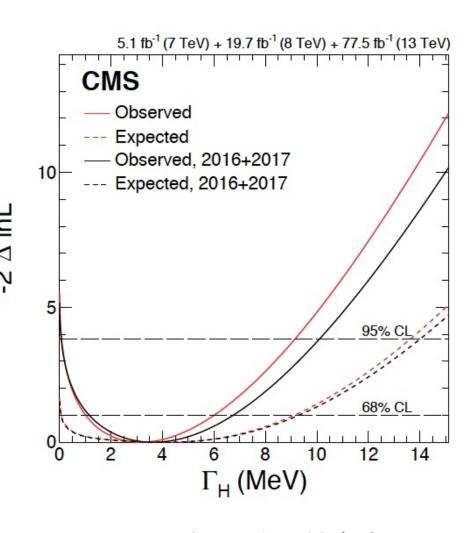
125GeVだと数MeVの幅(細い) 直接幅を計ることはできない。 と思っていたが、

細いBW共鳴

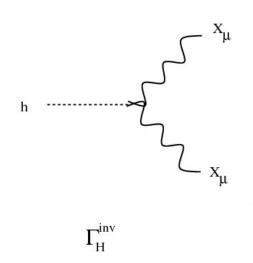
崩壊幅の測定

q my q Z w, zm H - H m w, zm q

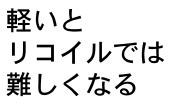
$$\sigma_{\mathrm{vv} \to \mathrm{H} \to 4\ell}^{\mathrm{on\text{-}shell}} \propto \mu_{\mathrm{vvH}}$$

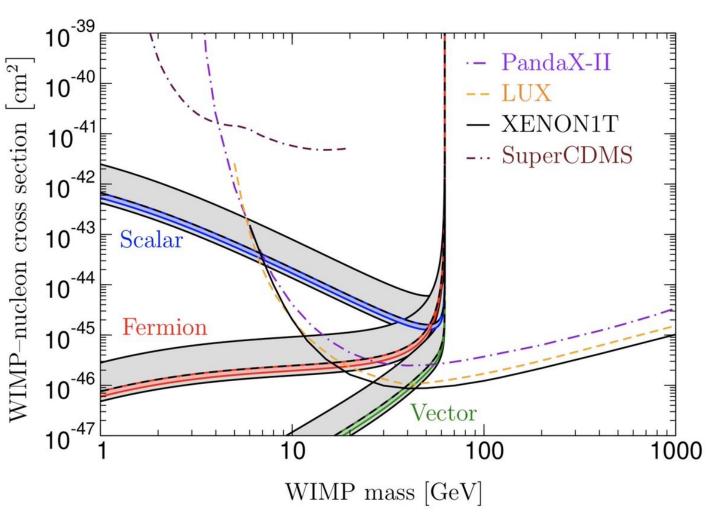

$$M(41)=105-140GeV$$

$$\sigma_{\text{vv}\to\text{H}\to4\ell}^{\text{off-shell}} \propto \mu_{\text{vvH}} \Gamma_{\text{H}}$$

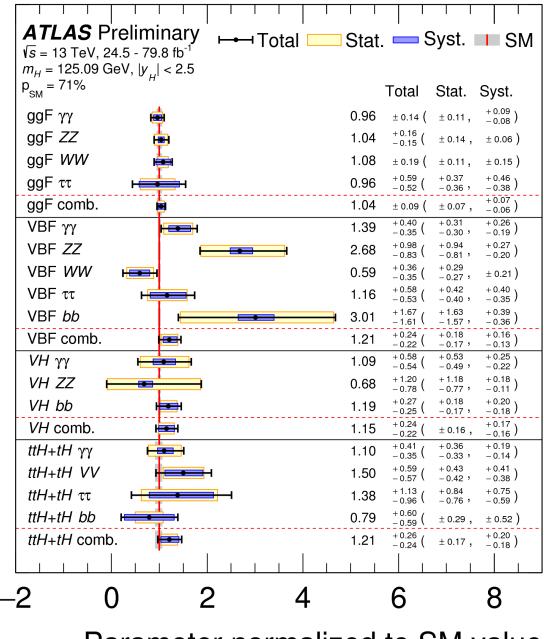

M(41)>220GeV

3.2 + 2.8 - 2.2 MeV


SMの予言 Γ(H)=4.1MeV


→ ヒッグスと良く結合する 軽い暗黒物質はない

弱い電荷をもった 軽めの暗黒物質は つらい

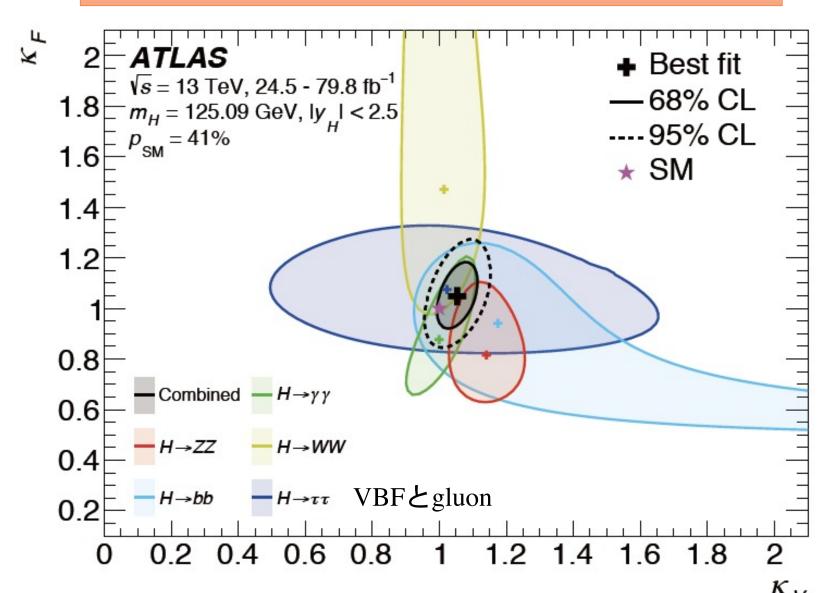

62GeVより軽い暗黒物質には かなり厳しいことが言える

5. ヒッグスの結合 強度の測定

生成過程 * 崩壊過程

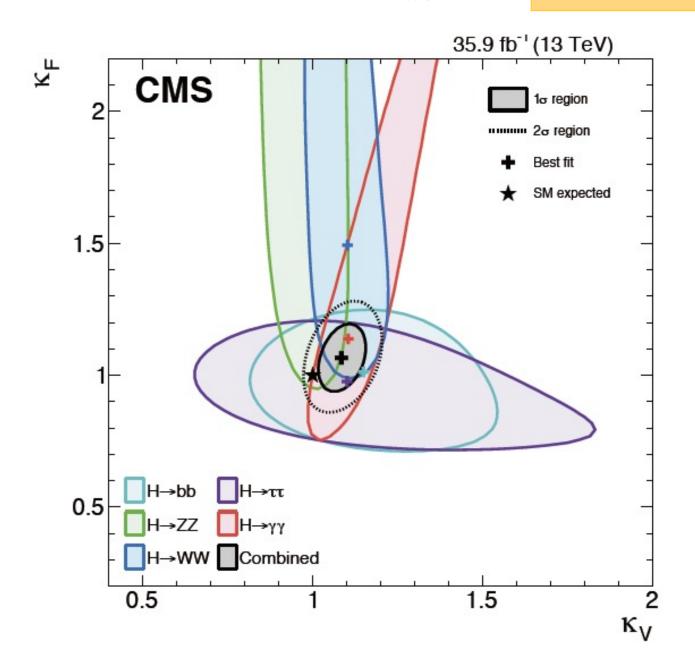
GF 9% VBF 20% ttH 20%

Parameter normalized to SM value

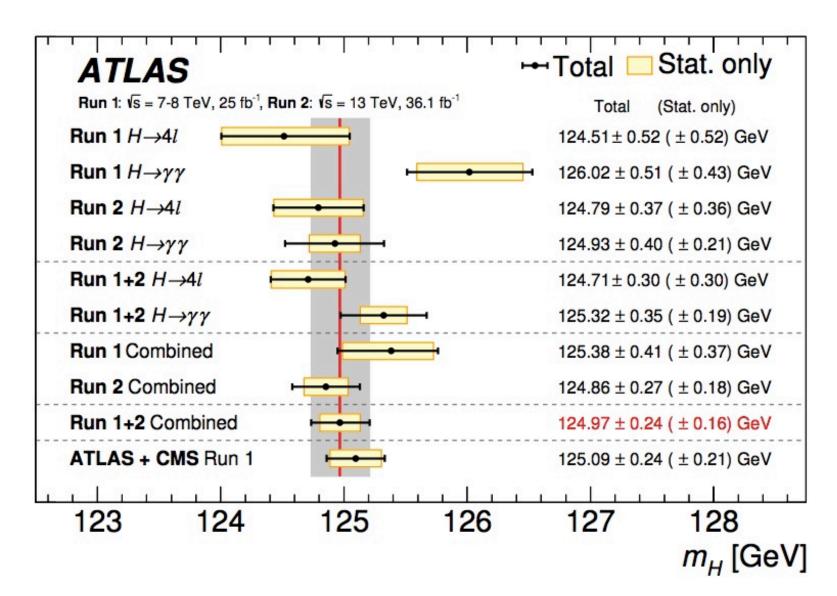

SM Tree Levelの結合定数で規格化

$$\mathcal{L} = \kappa_{Z} \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu} H + \kappa_{W} \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu} H + \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^{2}\theta_{W} Z_{\mu\nu} Z^{\mu\nu} + 2W_{\mu\nu}^{+} W^{-\mu\nu}\right) H + \kappa_{g} \frac{\alpha_{s}}{12\pi v} G_{\mu\nu}^{a} G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H$$

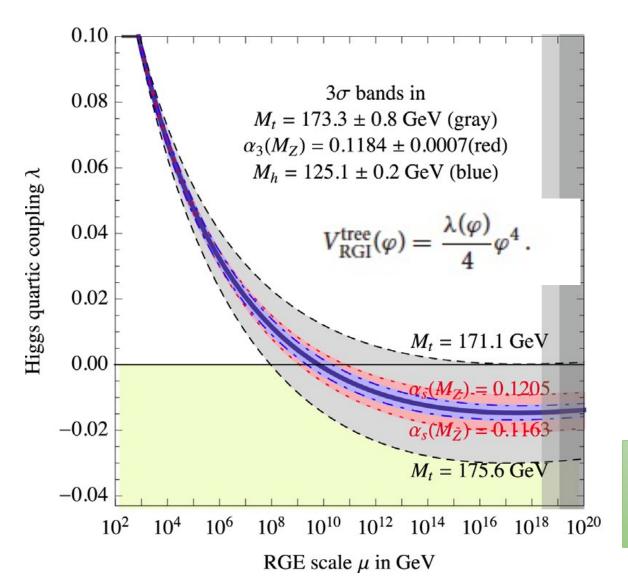
	LHC Run 1	ATLAS Run 2	CMS Run 2	HL-LHC (expected)
κ_{γ}	$0.87^{+0.14}_{-0.09}$	1.05 ± 0.09	$1.07^{+0.10}_{-0.14}^{+0.09}_{-0.05}$	1.8%
κ_W	$0.87^{+0.13}_{-0.09}$	1.05 ± 0.09	$-1.13^{+0.15}_{-0.10}^{+0.06}_{-0.08}$	1.7%
κ_Z	-0.98 ± 0.10	1.11 ± 0.08	$1.00^{+0.09}_{-0.09}{}^{+0.06}_{-0.07}$	1.5%
κ_g	$0.78^{+0.13}_{-0.10}$	$0.99^{+0.11}_{-0.10}$	$1.18^{+0.10}_{-0.09}^{+0.12}_{-0.10}$	2.5%
κ_t	$1.40^{+0.24}_{-0.21}$	$1.09^{+0.15}_{-0.14}$	$0.98^{+0.08+0.12}_{-0.08-0.11}$	3.4%
κ_b	$0.49^{+0.27}_{-0.15}$	$1.03^{+0.19}_{-0.18}$	$1.17^{+0.18}_{-0.29}^{+0.20}_{-0.10}$	3.7%
$\kappa_{ au}$	$0.84^{+0.15}_{-0.11}$	$1.05^{+0.16}_{-0.15}$	$0.80^{+0.56}_{-0.81}^{+0.17}_{-0.00}$	1.9%

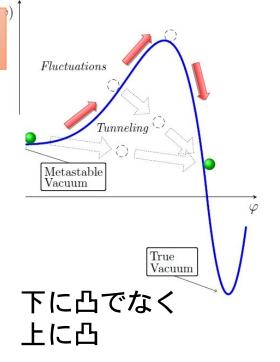

W/Zとの結合	誤差10%弱	→ 1.5%程度
Top との結合	15%	→ 3%
Bottom との結合	20%弱	→ 3.5%程度
Tau との結合	15%	$\rightarrow 2\%$

SSBと湯川共に 1σ くらい大きいが68%CLでSMと一致

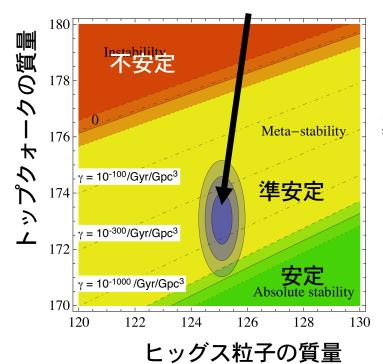

CMSも同じような傾向

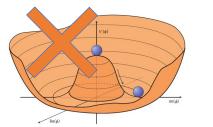
PDFの問題?何か??




Higgsについて 一番 大切な 課題

6. ヒッグスの質量 0.2%の精度


7.125GeVが意味すること 1



標準理論:完全ではなく なんか、新しい真空が ある

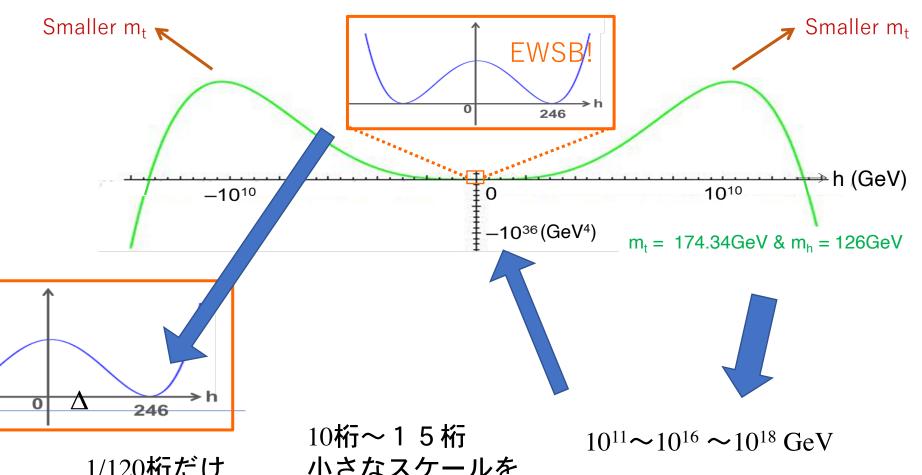
我々の宇宙(真空)は

準安定:宇宙はある日、 大きな変化(相転移)で消えてし まう!!!

こんな簡単な話 ではなかった

イメージ

真空のポテンシャル 我々の宇宙(底でない) metastable state


本当の底の存在の示唆 ヒッグスのエネルギーより高いエネルギーでの新現象の示唆

いろいろな

宇宙がなくなる心配より 電弱スケールがいかに変か?

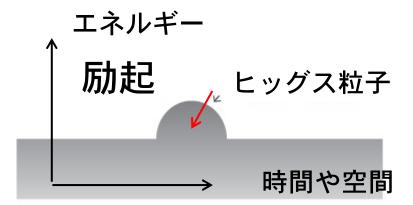
杞憂

謎 1 電弱スケール

1/120桁だけ 上にずれている 小さなスケールを

生み出し、安定させる何かアイデアやはり必要。

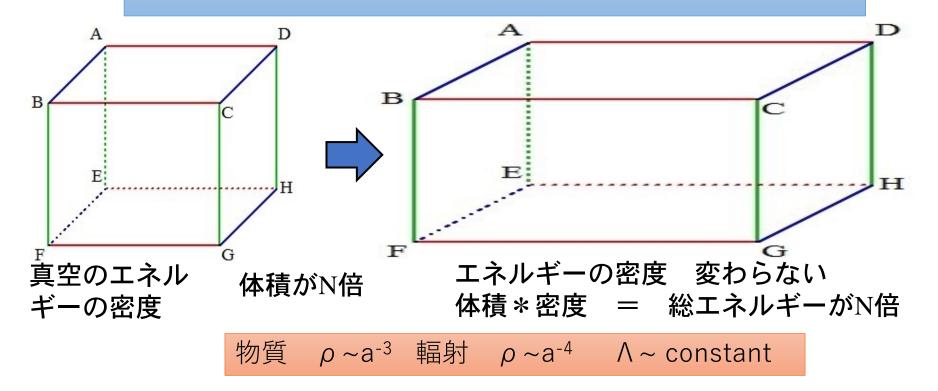
125GeVが意味すること 2



8. ヒッグス粒子発見の意味

ヒッグス粒子が すごいのではなく **ヒッグス場がスゴイ**

粒子(gluon)と反粒子(gluon)を対消滅させた エネルギーで真空"場"を励起させたら


- → 弱い電荷を持った"粒子"
- → 真空に何か「弱い電荷の場」 が隠れていた

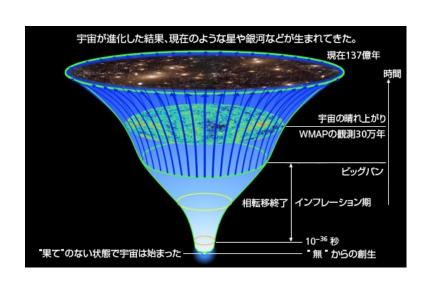
物質を形作る粒子 クォーク・レプトン 力を伝える素粒子 ゲージ粒子

質量を生み出す 真空:ヒッグス場

不思議な真空のエネルギー

真空のエネルギー → インフレーション 偽真空 Eにあると、a=exp(Et)で指数関数的にスケールが 宇宙のインフレーション膨張にしたがって、 体積が大きくE(エネルギー) * Vがどんどん増加 相転移した時 → ビックバン

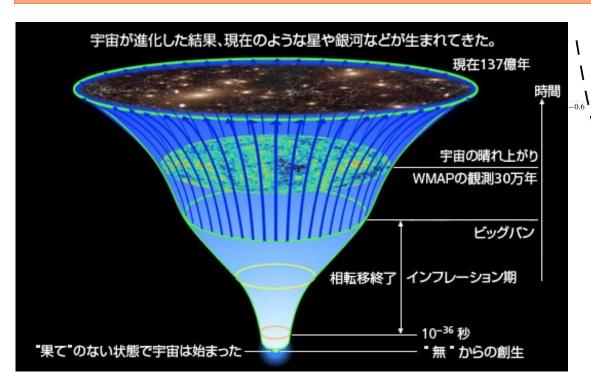
エネルギー・運動量 保存則は?


「昨日の物理法則と、今日の物理法則が同じだから、

「あっちの物理法則とこっちの物理法則が同じだから、

(営業妨害ではありません)

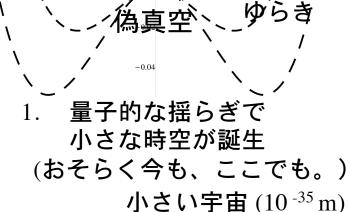
実はその程度のコト

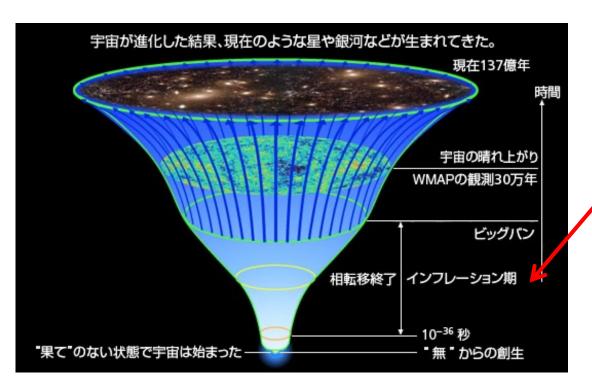


時間の始まりや 空間に端があったら エネルギーや運動量は 保存しない。

ミクロな場がマクロに影響を及ぼす

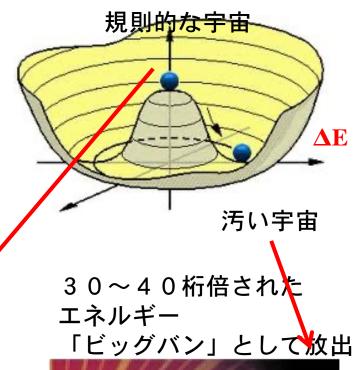
(真空の場:マクロな影響)

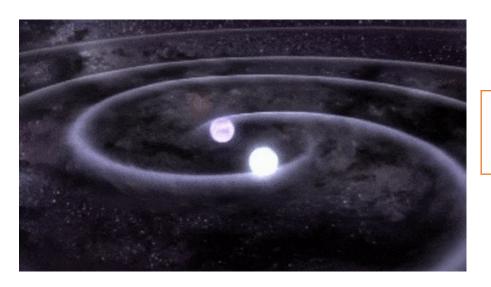

真空の状態の変化(相転移)が宇宙の進化をドライブ


a=a₀exp(Et) 4. インフレーションが起こる 宇宙のサイズa が 10³⁰-10⁴⁰倍 宇宙が 1-100m くらいのサイズ

エネルギーが保存していない (時間に端があると保存しない)

- 2. (理由は?? たまたま?)
 SSB(安定)
- 3. 宇宙は短時間 偽真空 エネルギーが 高い状態 E になる

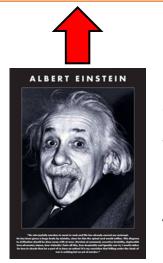

宇宙の誕生の謎に迫る成果



インフレーションを起こすエネルギ-

ビッグバンは、宇宙誕生(容れ物)でなく、物質誕生 モノを生んだのは、真空の場

このヒッグスがインフレーションを起こしたか? ヒッグスに兄貴分のヒッグスがおこしたか? 現在論争中。



アインシュタイン方程式

$$R_{\mu\nu} - \frac{1}{2} R \; g_{\mu\nu} + \Lambda \; g_{\mu\nu} = \frac{8 \pi G}{c^4} \, T_{\mu\nu}$$

時空の 曲がり方

ー エネルギー があると 時空がまがる

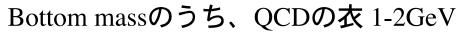
!!??

人類最大の謎?

暗黒エネルギー (観測値)

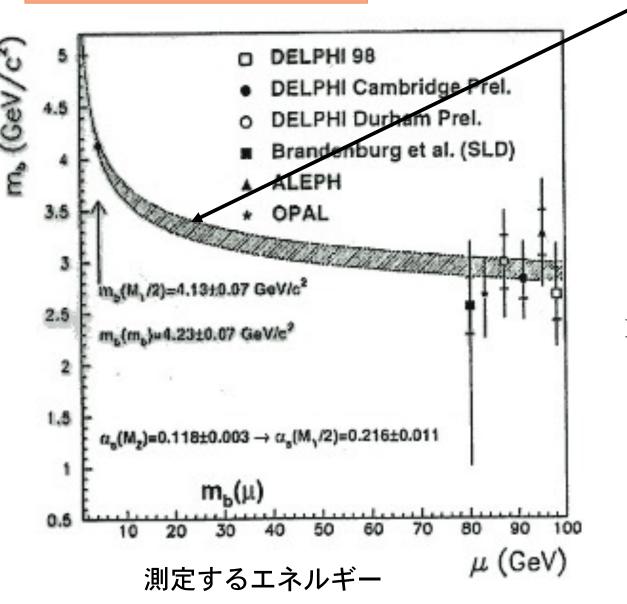
60桁違う <<<

ヒッグス場がある (実験事実)


人生最大の失敗なのか 人生最高の成功なのか?

→ 暗黒エネルギー

ミクロ量子論とマクロな一般相対性理論 どう折り合いつけえるのか?


角砂糖 1 つの大きさ 10²⁸kg

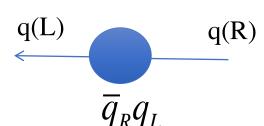
質量も測定するエネルギー の関数

Mb=3GeV yb=0.017

Ytau=0.01

Higgs起源のmass

QCD: qq が真空期待値 A~ 200MeV 運動学的なmassをもつ


Chiral symmetry Breaking in QCD vacuum

$$\overline{q}q$$

Color exchange for long range (>1fm) becomes strong, quark anti-quark system has strong bound and condensate dynamically in vacuum (QCD effect).

$$<\overline{q}q>=<\overline{q}_Rq_L>+c.c.$$

This make mass (Λ_{QCD} ~300MeV) Many part of hadron mass comes from QCD

This vacuum has also the same weak charge.

真空にいっぱい

Analogy possible; QCD color ←→ Techni-color quark ←→ Techni-fermion AQCD ←→ EW Scale

V = 246 GeV

 f_R ϕ

Higgs is composite or elemental?

Techni-color

SUSY